Mass Spectrum of the Nucleon and Lambda in Lattice QCD

Derek Leinweber CSSM Lattice Collaboration

Key Collaborators Selim Mahbub, Ben Menadue, Dale Roberts, Waseem Kamleh, Peter Moran and Tony Williams

Centre for the Subatomic Structure of Matter School of Chemistry & Physics University of Adelaide, SA, Australia

Derek Leinweber Mass Spectrum of the Nucleon and Lambda in Lattice QCD

Outline

- Variational Method
 - PACS-CS Simulation Details
- 2 The Nucleon Spectrum
 - Roper in Dynamical-Fermion QCD
 - Discovering More States
 - Eigenstate Identification
 - Wave functions
 - Nucleon Structure
- Ohiral Extrapolations
 - Optimal Regulators
 - Magnetic Moments
 - Electric Charge Radii
 - Resonances

4

Electromagnetic Structure of the $\Lambda(1405)$ - \sim -

Two-Point Correlation Functions Interpolating Fields PACS-CS Simulation Details Source/Sink Smearing Method

Two point correlation function:

$$G_{ij}(t, \vec{p}) = \sum_{\vec{x}} e^{-i\vec{p}.\vec{x}} \langle \Omega | T\{\chi_i(x)\bar{\chi}_j(0)\} | \Omega \rangle.$$

Inserting completeness

$$\sum_{m{B},m{ar{
ho}}',m{s}} |m{B},m{ar{
ho}}',m{s}
angle\langlem{B},m{ar{
ho}}',m{s}|=I$$

Then

$$G_{ij}(t, \vec{p}) = \sum_{B^+} \lambda_{B^+} \bar{\lambda}_{B^+} e^{-E_{B^+}t} \frac{\gamma \cdot p_{B^+} + M_{B^+}}{2E_{B^+}}$$
$$+ \sum_{B^-} \lambda_{B^-} \bar{\lambda}_{B^-} e^{-E_{B^-}t} \frac{\gamma \cdot p_{B^-} - M_{B^-}}{2E_{B^-}}$$

Variational Method

The Nucleon Spectrum Chiral Extrapolations Electromagnetic Structure of the Λ(1405) Summary of Results Two-Point Correlation Functions Interpolating Fields PACS-CS Simulation Details Source/Sink Smearing Method

• At
$$\vec{p} = 0$$

$$egin{aligned} G^{\pm}_{ij}(t,ec{0}) &= \mathrm{Tr}_{\mathrm{sp}}[\Gamma_{\pm}G_{ij}(t,ec{0})] \ &= \sum_{\mathcal{B}^{\pm}}\lambda^{\pm}_{i}ar{\lambda}^{\pm}_{j}\mathbf{e}^{-M_{\mathcal{B}^{\pm}}t}. \end{aligned}$$

Parity projection operator,

$$\Gamma_{\pm}=\frac{1}{2}(1\pm\gamma_0).$$

Asymptotically

$$G_{ij}^{\pm}(t,\vec{0}) \stackrel{t\to\infty}{=} \lambda_{i0}^{\pm}\bar{\lambda}_{j0}^{\pm}e^{-M_{0\pm}t}.$$

イロト イポト イヨト イヨト

Two-Point Correlation Functions Interpolating Fields PACS-CS Simulation Details Source/Sink Smearing Method

- In ensemble average, $G^{\pm}_{ij}(t) = G^{\pm}_{ji}(t)$
- $\frac{1}{2}[G_{ij}^{\pm}(t) + G_{ji}^{\pm}(t)]$ provides an improved unbiased estimator leads to use symmetric eigenvalue Eq.
- Effective mass, $M_{\rm eff}(t) = \ln \left(\frac{G(t)}{G(t+1)} \right)$

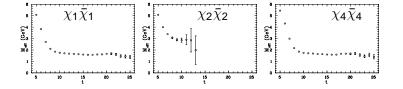
イロト イポト イヨト イヨト

Two-Point Correlation Functions Interpolating Fields PACS-CS Simulation Details Source/Sink Smearing Method

Interpolators

Consider

$$egin{aligned} \chi_1(\mathbf{x}) &= \epsilon^{abc}(u^{Ta}(\mathbf{x})\,\mathcal{C}\gamma_5\,d^b(\mathbf{x}))\,u^c(\mathbf{x})\,, \ \chi_2(\mathbf{x}) &= \epsilon^{abc}(u^{Ta}(\mathbf{x})\,\mathcal{C}\,d^b(\mathbf{x}))\,\gamma_5\,u^c(\mathbf{x})\,, \ \chi_4(\mathbf{x}) &= \epsilon^{abc}(u^{Ta}(\mathbf{x})\,\mathcal{C}\gamma_5\gamma_4\,d^b(\mathbf{x}))\,u^c(\mathbf{x}). \end{aligned}$$



Derek Leinweber Mass Spectrum of the Nucleon and Lambda in Lattice QCD

Variational Method

The Nucleon Spectrum Chiral Extrapolations Electromagnetic Structure of the Λ(1405) Summary of Results Two-Point Correlation Functions Interpolating Fields PACS-CS Simulation Details Source/Sink Smearing Method

Variational Method

• Consider *N* interpolating fields, then

$$\bar{\phi}^{\alpha} = \sum_{i=1}^{N} u_i^{\alpha} \, \bar{\chi}_i,$$
$$\phi^{\alpha} = \sum_{i=1}^{N} v_i^{\alpha} \, \chi_i,$$

such that,

$$\langle {m B}_eta, {m
ho}, {m s} | ar \phi^lpha | \Omega
angle = \delta_{lphaeta} ar z^lpha ar u(lpha, {m
ho}, {m s}),$$

$$\langle \Omega | \phi^{lpha} | B_{eta}, p, s \rangle = \delta_{lpha eta} z^{lpha} u(lpha, p, s),$$

イロト イポト イヨト イヨト

Two-Point Correlation Functions Interpolating Fields PACS-CS Simulation Details Source/Sink Smearing Method

 Then a two point correlation function matrix for *p* = 0, right multiplied by u_i^α has the property

$$\begin{split} \boldsymbol{G}_{ij}^{\pm}(t) \, \boldsymbol{u}_{j}^{\alpha} &= (\sum_{\vec{\mathbf{x}}} \mathrm{Tr}_{\mathrm{sp}} \{ \mathsf{\Gamma}_{\pm} \langle \Omega | \chi_{i} \bar{\chi}_{j} | \Omega \rangle \}) \, \boldsymbol{u}_{j}^{\alpha} \\ &= \lambda_{i}^{\alpha} \bar{\boldsymbol{z}}^{\alpha} \boldsymbol{e}^{-m_{\alpha} t}. \end{split}$$

(no sum over α)

• The t dependence is contained in the exponential term

イロト イポト イヨト イヨト

Two-Point Correlation Functions Interpolating Fields PACS-CS Simulation Details Source/Sink Smearing Method

• This provides a recurrence relation at time $(t_0 + \triangle t)$,

$$G_{ij}(t_0 + riangle t) u_j^{lpha} = e^{-m_{lpha} riangle t} G_{ij}(t_0) u_j^{lpha}.$$

• Multiplying by $[G_{ij}(t_0)]^{-1}$ from left,

$$[(\boldsymbol{G}(t_0))^{-1} \boldsymbol{G}(t_0 + \bigtriangleup t)]_{ij} \boldsymbol{u}_j^{\alpha} = \boldsymbol{c}^{\alpha} \boldsymbol{u}_i^{\alpha},$$

- where $c^{\alpha} = e^{-m_{\alpha} \Delta t}$ is the eigenvalue.
- Similarly, it can also be solved for the left eigenvalue equation for v^α eigenvector,

$$\mathbf{v}_i^{lpha} \left[\mathbf{G}(\mathbf{t}_0 + riangle t) \left(\mathbf{G}(\mathbf{t}_0)
ight)^{-1}
ight]_{ij} = \mathbf{c}^{lpha} \, \mathbf{v}_j^{lpha}.$$

イロト イボト イヨト イヨト

Two-Point Correlation Functions Interpolating Fields PACS-CS Simulation Details Source/Sink Smearing Method

• The vectors u_j^{α} and v_i^{α} diagonalize the correlation matrix at time t_0 and $t_0 + \triangle t$ making the projected correlation function

$$v_i^{lpha} \mathsf{G}_{ij}(t) u_j^{eta} = \delta^{lphaeta} z^{lpha} ar{z}^{eta} \mathsf{e}^{-m_{lpha}t}$$

 The projected correlator, is then analyzed to obtain masses of different states,

$$v_i^{\alpha}G_{ij}^{\pm}(t)u_j^{\alpha}\equiv G_{\pm}^{\alpha},$$

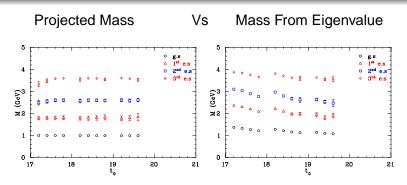
Our effective mass is defined as

$$M^lpha_{
m eff}(t) = \ln\left(rac{G^lpha_{\pm}(t,ec{0})}{G^lpha_{\pm}(t+1,ec{0})}
ight).$$

イロト イポト イヨト イヨト

Two-Point Correlation Functions Interpolating Fields PACS-CS Simulation Details Source/Sink Smearing Method

4 \times 4 correlation matrix of χ_1 with 4 smearing levels



- t_0 is shown in major tick marks
- $\triangle t$ is shown in minor tick marks

Two-Point Correlation Functions Interpolating Fields PACS-CS Simulation Details Source/Sink Smearing Method

PACS-CS Simulation Details

PACS-CS Collaboration: S. Aoki, et al., Phys. Rev. **D79** (2009) 034503.

- Lattice volume: $32^3 \times 64$
- Non-perturbative $\mathcal{O}(a)$ -improved Wilson quark action
- Iwasaki gauge action
- 2+1 flavour dynamical-fermion QCD
- $\beta = 1.9$ providing a = 0.0907 fm
- *K_{ud}* = { 0.13700, 0.13727, 0.13754, 0.13770, 0.13781 }
- $K_{\rm s} = 0.13640$
- Lightest pion mass is 156 MeV.
- Five ensembles of 350 configurations.
- 750 sources for lightest mass.

ヘロト ヘ戸ト ヘヨト ヘヨト

Two-Point Correlation Functions Interpolating Fields PACS-CS Simulation Details Source/Sink Smearing Method

Sommer Scale

Lattice spacing is set via the force between static quarks

$$\left. r_c^2 \left. \frac{\partial V(r)}{\partial r} \right|_{r=r_c} = c$$

- Sommer prefers c = 1.65, such that $r_c = r_0 = 0.49$ fm
- The Sommer scale facilitates comparisons with other results

イロト イポト イヨト イヨ

Two-Point Correlation Functions Interpolating Fields PACS-CS Simulation Details Source/Sink Smearing Method

Source Smearing

Correlation matrices are built from a variety of source and sink smearings.

$$\psi_i(\mathbf{x}, t) = \sum_{\mathbf{x}'} F(\mathbf{x}, \mathbf{x}') \psi_{i-1}(\mathbf{x}', t),$$

where,

$$\begin{aligned} F(\mathbf{x},\mathbf{x}') &= (1-\alpha)\delta_{\mathbf{x},\mathbf{x}'} + \frac{\alpha}{6}\sum_{\mu=1}^{3}[U_{\mu}(\mathbf{x})\delta_{\mathbf{x}',\mathbf{x}+\hat{\mu}} \\ &+ U_{\mu}^{\dagger}(\mathbf{x}-\hat{\mu})\delta_{\mathbf{x}',\mathbf{x}-\hat{\mu}}], \end{aligned}$$

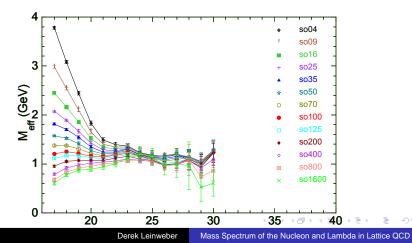
Fixing $\alpha = 0.7$, the procedure is repeated $N_{\rm sm}$ times.

イロト イポト イヨト イヨ

Two-Point Correlation Functions Interpolating Fields PACS-CS Simulation Details Source/Sink Smearing Method

Smeared Source - Point Sink Effective Masses

For second lightest quark mass and 50 configurations



Two-Point Correlation Functions Interpolating Fields PACS-CS Simulation Details Source/Sink Smearing Method

4 × 4 bases of $\overline{\chi_1 \bar{\chi}_1}$

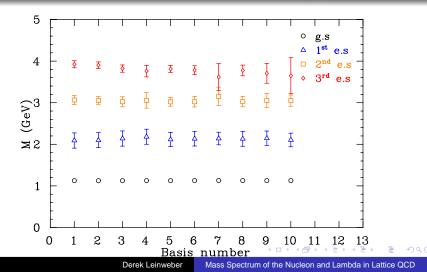
$\textbf{Sweeps} \rightarrow$	16	25	35	50	70	100	125	200	400	800
Basis No. \downarrow	Bases									
1	16	-	35	-	70	100	-	-	-	-
2	16	-	35	-	70	-	125	-	-	-
3	16	-	35	-	-	100	-	200	-	-
4	16	-	35	-	-	100	-	-	400	-
5	16	-	-	50	-	100	125	-	-	-
6	16	-	-	50	-	100	-	200	-	-
7	16	-	-	50	-	-	125	-	-	800
8	-	25	-	50	-	100	-	200	-	-
9	-	25	-	50	-	100	-	-	400	-
10	-	-	35	-	70	-	125	_ ∢ ≣ ≻ ∢	400	540

Derek Leinweber Mass Spectrum of the Nucleon and Lambda in Lattice QCD

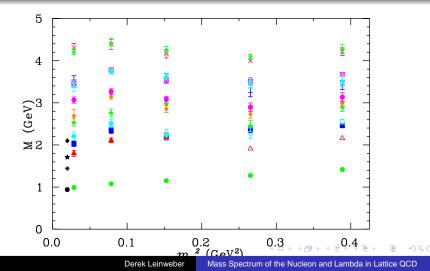
Variational Method

The Nucleon Spectrum Chiral Extrapolations Electromagnetic Structure of the Λ(1405) Summary of Results Two-Point Correlation Functions Interpolating Fields PACS-CS Simulation Details Source/Sink Smearing Method

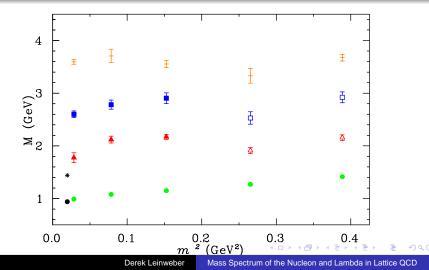
All 4×4 bases: second lightest mass



Roper in Dynamical-Fermion QCD N1/2⁻⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

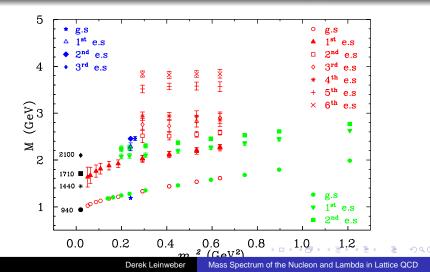


Roper in Dynamical-Fermion QCD N1/2⁻⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

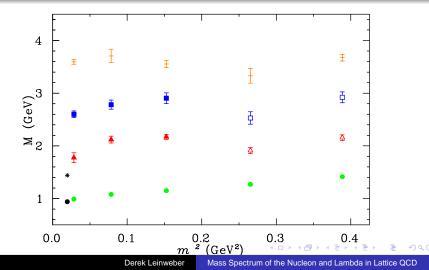


Roper in Dynamical-Fermion QCD N1/2⁻⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

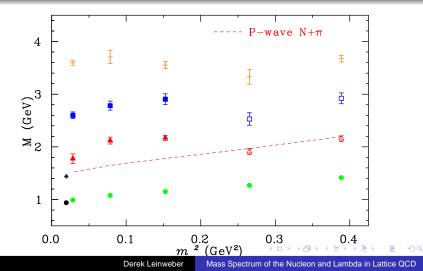
Even Parity Nucleon Spectrum in Quenched QCD



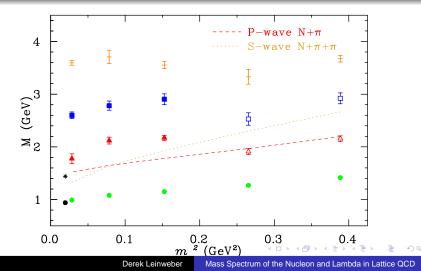
Roper in Dynamical-Fermion QCD N1/2⁻⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure



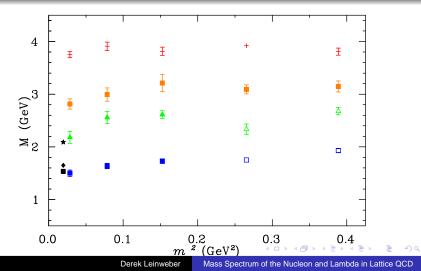
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure



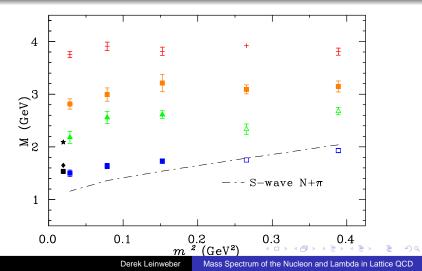
Roper in Dynamical-Fermion QCD N1/2⁻⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure



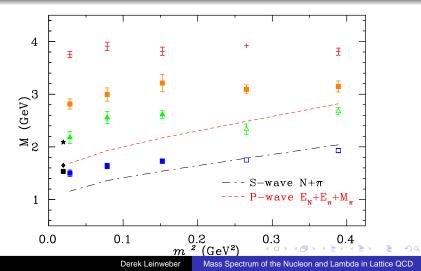
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure



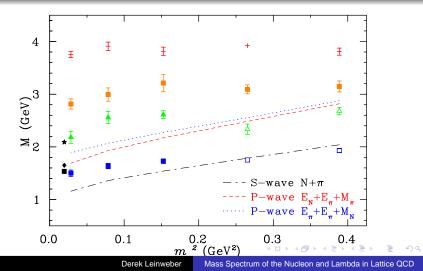
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure



Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure



Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure



Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

Loss of multi-particle states at light quark masses

Perhaps as the quark masses become light:

- Attractive spin-dependent forces, inversely related to quark masses, become strong.
- The generation of a resonance and its associated spectral strength masks the weakly-coupled scattering states.

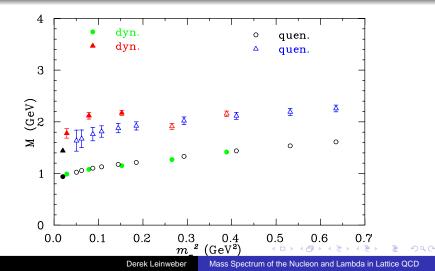
On a finite volume lattice:

- The density of states increases with the lattice volume V.
- The coupling to the meson-baryon states is suppressed by $1/\sqrt{V}$.
- Therefore, scattering states are more difficult to excite on large volumes.

イロト イポト イヨト イヨト

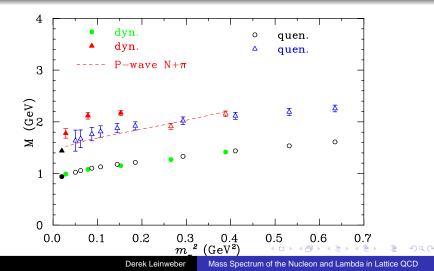
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

Quenched Vs Dynamical, N^+ states



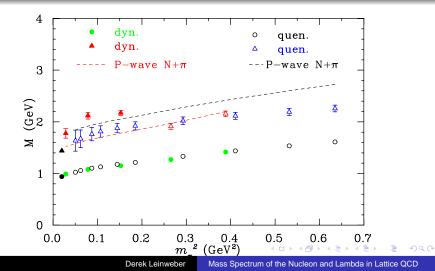
Roper in Dynamical-Fermion QCD N1/2⁻⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

Quenched Vs Dynamical, N^+ states



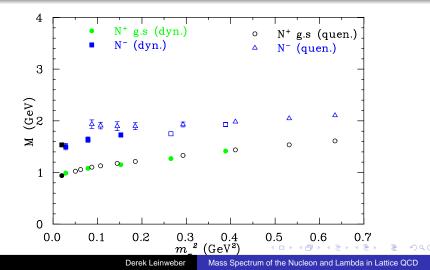
Roper in Dynamical-Fermion QCD N1/2⁻⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

Quenched Vs Dynamical, N^+ states



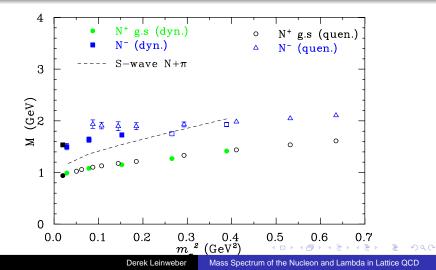
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

Quenched Vs Dynamical, N^- states



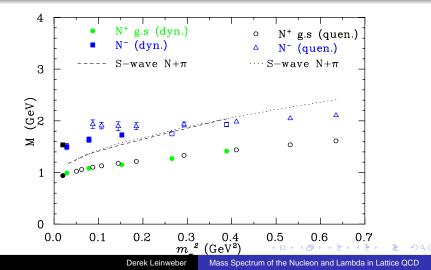
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

Quenched Vs Dynamical, N^- states



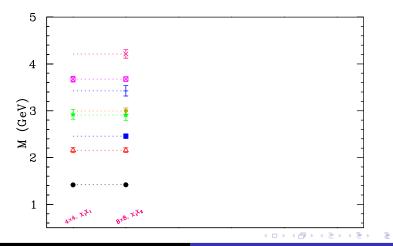
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

Quenched Vs Dynamical, N^- states



Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCI Discovering More States Eigenstate Identification Wave functions Nucleon Structure

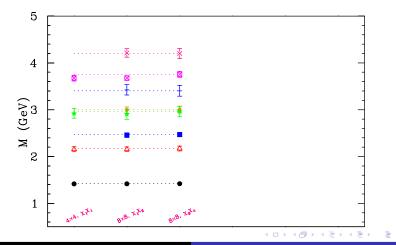
N^+ Spectrum for heaviest m_q : 4 × 4 → 8 × 8 $\chi_1 \chi_2$



Derek Leinweber Mass Spectrum of the Nucleon and Lambda in Lattice QCD

Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCE Discovering More States Eigenstate Identification Wave functions Nucleon Structure

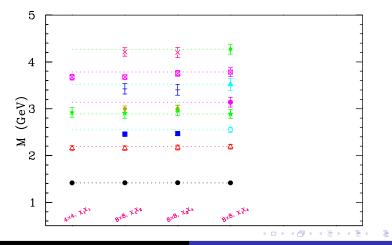
N^+ Spectrum for heaviest m_q : 8 × 8 $\chi_2 \chi_4$



Derek Leinweber Mass Spectrum of the Nucleon and Lambda in Lattice QCD

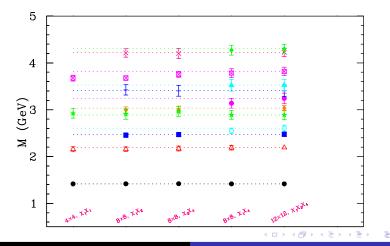
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCE Discovering More States Eigenstate Identification Wave functions Nucleon Structure

N^+ Spectrum for heaviest m_q : 8 × 8 $\chi_1 \chi_4$



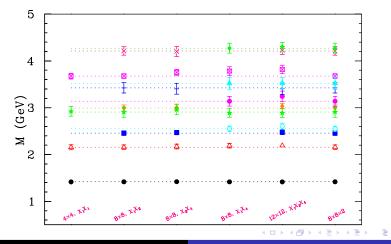
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCE Discovering More States Eigenstate Identification Wave functions Nucleon Structure

N^+ Spectrum for heaviest m_q : 12 × 12 $\chi_1 \chi_2 \chi_4$



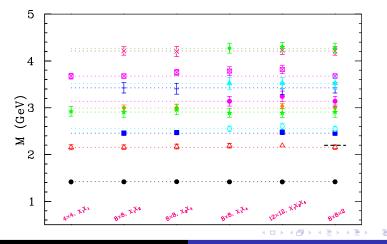
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCI Discovering More States Eigenstate Identification Wave functions Nucleon Structure

N^+ Spectrum for heaviest m_q : 8 × 8



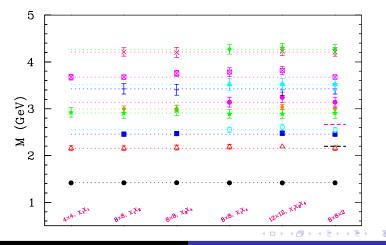
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCI Discovering More States Eigenstate Identification Wave functions Nucleon Structure

N^+ Spectrum: P-wave $N\pi$ threshold



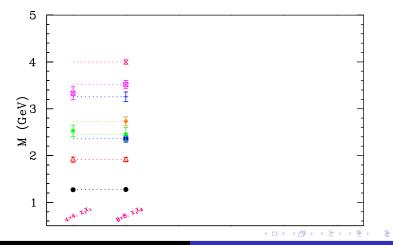
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCI Discovering More States Eigenstate Identification Wave functions Nucleon Structure

N^+ Spectrum: P-wave $N\pi$ and S-wave $N\pi\pi$



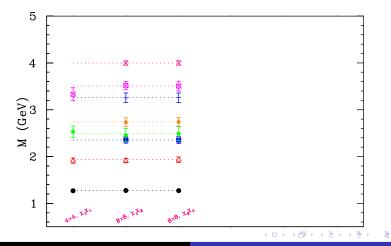
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCI Discovering More States Eigenstate Identification Wave functions Nucleon Structure

N^+ Spectrum for 2nd heaviest m_q : 4 × 4 → 8 × 8 $\chi_1 \chi_2$



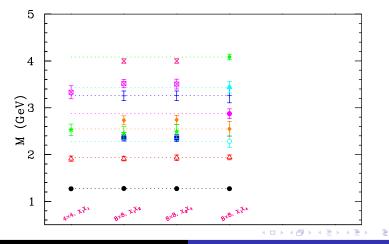
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

N^+ Spectrum for 2nd heaviest m_q : 8 × 8 $\chi_2 \chi_4$



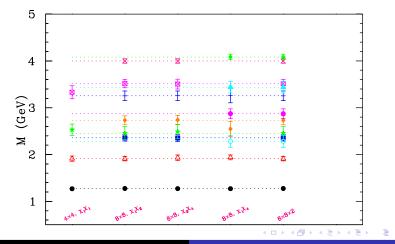
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

N^+ Spectrum for 2nd heaviest m_q : 8 × 8 $\chi_1 \chi_4$



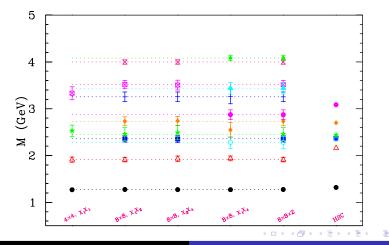
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

N^+ Spectrum for 2nd heaviest m_q : 8 × 8



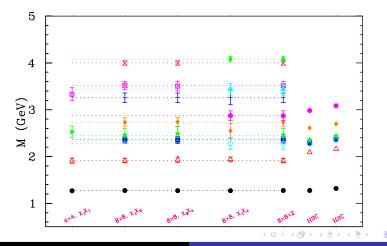
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCE Discovering More States Eigenstate Identification Wave functions Nucleon Structure

N^+ Spectrum for 2nd heaviest m_q : HSC Comparison



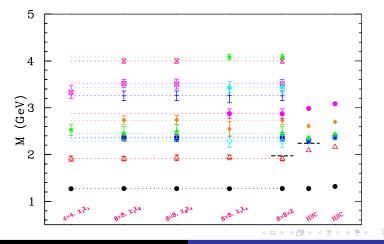
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

N^+ Spectrum for 2nd heaviest m_q : HSC Rescaled



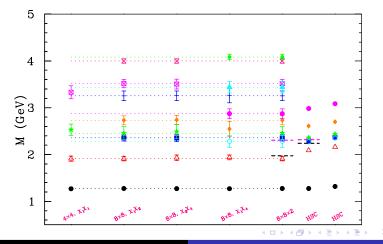
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCI Discovering More States Eigenstate Identification Wave functions Nucleon Structure

N^+ Spectrum: P-wave $N\pi$ thresholds



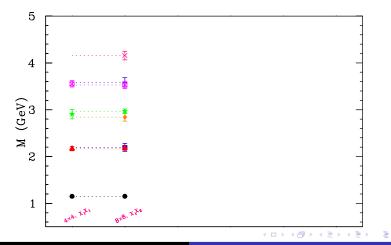
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCE Discovering More States Eigenstate Identification Wave functions Nucleon Structure

N^+ Spectrum: P-wave $N\pi$ and S-wave $N\pi\pi$



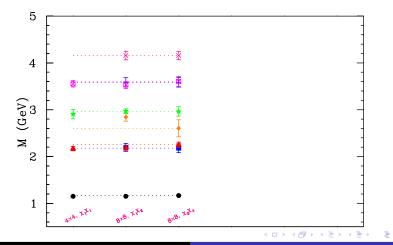
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCE Discovering More States Eigenstate Identification Wave functions Nucleon Structure

N^+ Spectrum for 3rd m_q : 4 × 4 → 8 × 8 $\chi_1 \chi_2$



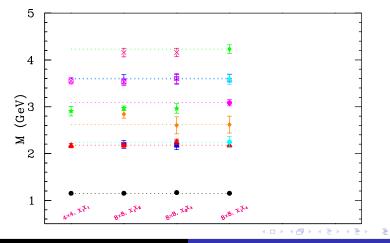
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

N^+ Spectrum for 3rd m_q : 8 × 8 $\chi_2 \chi_4$



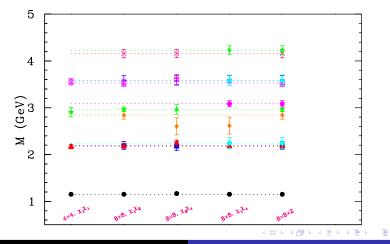
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

N^+ Spectrum for 3rd m_q : 8 × 8 $\chi_1 \chi_4$



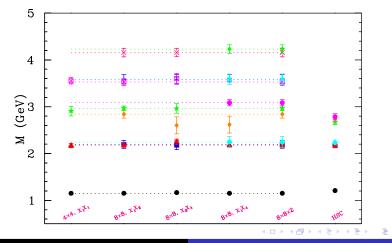
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

N^+ Spectrum for 3rd m_q : 8 × 8



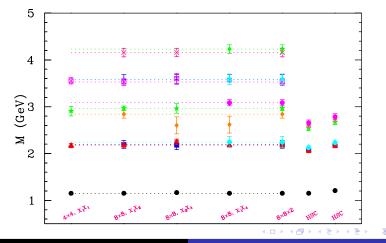
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QC Discovering More States Eigenstate Identification Wave functions Nucleon Structure

N^+ Spectrum for 3rd m_q : HSC Comparison



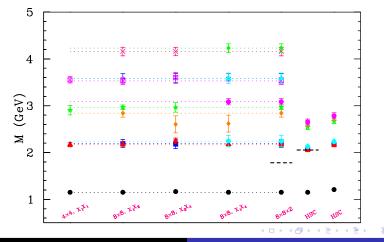
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCI Discovering More States Eigenstate Identification Wave functions Nucleon Structure

N^+ Spectrum for 3rd m_q : HSC Rescaled



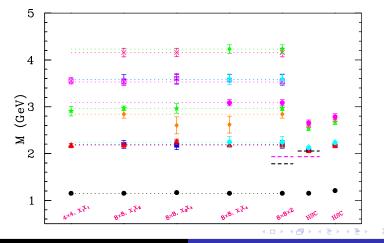
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCI Discovering More States Eigenstate Identification Wave functions Nucleon Structure

N^+ Spectrum: P-wave $N\pi$ thresholds



Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCE Discovering More States Eigenstate Identification Wave functions Nucleon Structure

N^+ Spectrum: P-wave $N\pi$ and S-wave $N\pi\pi$



Roper in Dynamical-Fermion QCD N1/2⁻⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

Quark-mass flow of eigenstates

- *M* interpolating fields making an $M \times M$ correlation matrix G(t)
- We determine \vec{u}^{α} of $[(G(t_0))^{-1} G(t_0 + \triangle t)]$
- Matrix $[(G(t_0))^{-1} G(t_0 + \triangle t)]$ is not symmetric. So \vec{u}^{α} are not orthogonal
- We explore the extent to which the eigenvectors $\vec{u}^{\alpha}(m_q)$ are orthogonal, by $\vec{u}^{\alpha}(m_q) \cdot \vec{u}^{\beta}(m_q)$
- By construction, $\vec{u}^{\alpha}(m_q) \cdot \vec{u}^{\beta}(m_q)$ is 1 for $\alpha = \beta$.

イロト イポト イヨト イヨト

Roper in Dynamical-Fermion QCD N1/2⁻⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

 $\vec{u}^{lpha}(m_q)\cdot \vec{u}^{eta}(m_q)$

Table: The scalar product $\vec{u}^{\alpha}(m_q) \cdot \vec{u}^{\beta}(m_q)$ for $\kappa = 0.13700$, for 8×8 correlation matrix of χ_1 and χ_2 .

$\alpha\downarrow$	$\beta \longrightarrow$						
1.00	0.02	-0.18	0.65	-0.07	0.10	-0.32	-0.09
0.02	1.00	0.02	0.07	0.15	0.06	0.42	0.03
-0.18	0.02	1.00	-0.10	0.36	-0.49	0.06	0.39
0.65	0.07	-0.10	1.00	-0.03	0.15	-0.57	-0.13
-0.07	0.15	0.36	-0.03	1.00	0.23	0.09	0.30
0.10	0.06	-0.49	0.15	0.23	1.00	-0.06	-0.61
-0.32	0.42	0.06	-0.57	0.09	-0.06	1.00	0.17
-0.09	0.03	0.39	-0.13	0.30	-0.61	0.17	1.00

Derek Leinweber Mass Spectrum of the Nucleon and Lambda in Lattice QCD

イロト イボト イヨト イヨト

Roper in Dynamical-Fermion QCD N1/2⁻⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

Quark-mass flow of eigenstates continued ····

• This feature enables the use of the generalised measure

$$\mathcal{U}^{lphaeta}(m_q,m_{q'})=ec{u}^{lpha}(m_q)\cdotec{u}^{eta}(m_{q'})$$

 Can be used to identify the states most closely related as we move from quark mass m_q to adjacent quark mass m_{q'}.

< < >> < <</>

→ Ξ →

Roper in Dynamical-Fermion QCD N1/2⁻⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

 $\mathcal{U}^{lphaeta}(\textit{m}_{\it q},\textit{m}_{\it q'})$

Table: $\vec{u}^{\alpha}(m_q) \cdot \vec{u}^{\beta}(m_{q'}), \kappa = 0.13700, \kappa' = 0.13727.$

$\alpha\downarrow$	$\beta \longrightarrow$						
0.98	-0.29	-0.14	0.63	-0.07	0.10	-0.32	-0.08
-0.19	-0.92	0.08	-0.03	0.14	0.06	0.42	0.05
-0.16	0.07	0.99	-0.09	-0.04	-0.53	0.09	0.36
0.63	-0.44	-0.02	0.99	-0.05	0.13	-0.55	-0.12
-0.12	-0.11	0.40	0.00	0.75	0.00	0.08	0.36
0.05	-0.11	-0.42	0.17	0.76	0.95	-0.12	-0.53
-0.45	-0.17	0.03	-0.67	0.08	-0.05	1.00	0.18
-0.09	0.00	0.34	-0.14	-0.34	-0.82	0.21	1.00

Derek Leinweber Mass Spectrum of the Nucleon and Lambda in Lattice QCD

• • • • • • • • • • • •

3

Roper in Dynamical-Fermion QCD N1/2⁻⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

Symmetric Correlation Matrix

- Recall, $G^{-1}(t_0) G(t_0 + \bigtriangleup t) \ket{u_i} = \lambda_i \ket{u_i}$
- Also, $G^{-1/2}(t_0) G^{+1/2}(t_0) = I$
- So, $G^{-1}(t_0) G(t_0 + \triangle t) G^{-1/2}(t_0) G^{+1/2}(t_0) | u_i \rangle = \lambda_i | u_i \rangle$
- Multiplying from the left by $G^{+1/2}(t_0)$ provides

 $\begin{array}{ll} G^{-1/2}(t_0)G(t_0+\bigtriangleup t)G^{-1/2}(t_0)G^{+1/2}(t_0) & |u_i\rangle = \lambda_i G^{+1/2}(t_0) & |u_i\rangle \\ G^{-1/2}(t_0)G(t_0+\bigtriangleup t)G^{-1/2}(t_0) & |w_i\rangle = \lambda_i & |w_i\rangle \end{array}$

where, $|w_i\rangle = G^{+1/2}(t_0) |u_i\rangle$

イロト 不得 トイヨト イヨト

Roper in Dynamical-Fermion QCD N1/2⁻⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

Symmetric Correlation Matrix

- $[G^{-1/2}(t_0) G(t_0 + \triangle t) G^{-1/2}(t_0)]$ is a real symmetric matrix with the same eigenvalue λ_i as before
- \vec{w}^{α} are orthogonal
- As in before, a scalar product of

$$\mathcal{W}^{lphaeta}(m_{q},m_{q'})=ec{w}^{lpha}(m_{q})\cdotec{w}^{eta}(m_{q'})$$

is constructed.

イロト イボト イヨト イヨト

Roper in Dynamical-Fermion QCD N1/2⁻⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

$$ec{w}^lpha(m_q)\cdotec{w}^eta(m_q)$$

Table: $\vec{w}^{\alpha}(m_q) \cdot \vec{w}^{\beta}(m_q)$ for $\kappa = 0.13700$ and for an 8 × 8 "symmetric" correlation matrix of χ_1 and χ_2 .

$\alpha\downarrow$	$\beta \longrightarrow$						
1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00

Derek Leinweber Mass Spectrum of the Nucleon and Lambda in Lattice QCD

イロト イポト イヨト イヨ

Roper in Dynamical-Fermion QCD N1/2⁻⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

 $\mathcal{W}^{lphaeta}(\pmb{m_{q}},\pmb{m_{q'}})$

Table: $\vec{w}^{\alpha}(m_q) \cdot \vec{w}^{\beta}(m_{q'}), \kappa = 0.13700, \kappa' = 0.13727.$

$\alpha\downarrow$	$\beta \longrightarrow$						
1.00	-0.09	0.00	0.00	0.01	0.00	0.01	0.00
0.09	0.99	-0.07	0.13	-0.01	0.00	0.01	0.00
0.01	0.07	1.00	-0.01	0.00	-0.01	0.00	0.00
-0.01	-0.13	0.02	0.98	-0.09	0.02	0.07	0.00
0.01	0.01	0.00	-0.09	-0.97	0.21	-0.01	0.03
0.00	0.00	0.01	0.00	0.20	0.95	-0.07	-0.23
-0.01	0.00	0.00	-0.07	0.01	0.07	0.99	-0.01
0.00	0.00	0.00	-0.01	-0.08	-0.21	0.01	-0.97

イロト イポト イヨト イヨ

Roper in Dynamical-Fermion QCD N1/2⁻⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

 $\mathcal{U}^{lphaeta}(\textit{m}_{\it q},\textit{m}_{\it q'})$

Table: $\vec{u}^{\alpha}(m_q) \cdot \vec{u}^{\beta}(m_{q'}), \kappa = 0.13700, \kappa' = 0.13727.$

$\alpha\downarrow$	$\beta \longrightarrow$						
0.98	-0.29	-0.14	0.63	-0.07	0.10	-0.32	-0.08
-0.19	-0.92	0.08	-0.03	0.14	0.06	0.42	0.05
-0.16	0.07	0.99	-0.09	-0.04	-0.53	0.09	0.36
0.63	-0.44	-0.02	0.99	-0.05	0.13	-0.55	-0.12
-0.12	-0.11	0.40	0.00	0.75	0.00	0.08	0.36
0.05	-0.11	-0.42	0.17	0.76	0.95	-0.12	-0.53
-0.45	-0.17	0.03	-0.67	0.08	-0.05	1.00	0.18
-0.09	0.00	0.34	-0.14	-0.34	-0.82	0.21	1.00

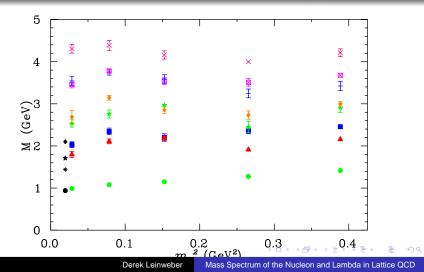
Derek Leinweber Mass Spectrum of the Nucleon and Lambda in Lattice QCD

• • • • • • • • • • • •

3

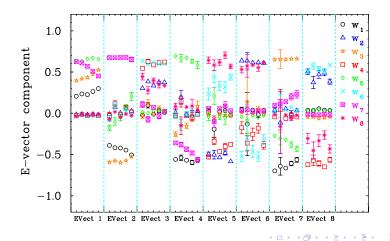
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

States identified by $\vec{w}^{\alpha}(m_q) \cdot \vec{w}^{\beta}(m_{q'})$



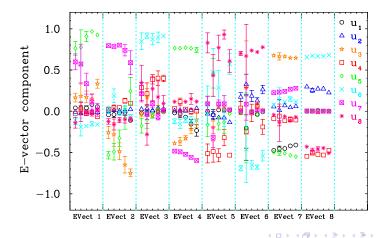
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

Eigenvectors, $|w_i\rangle$



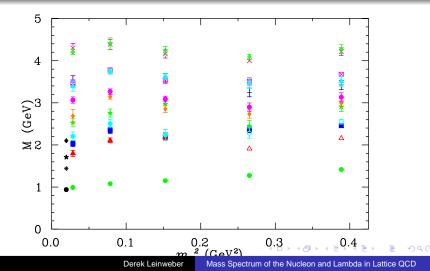
Roper in Dynamical-Fermion QCD M1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions

Eigenvectors, $|u_i\rangle = \overline{G^{-1/2}(t_0)|w_i\rangle}$



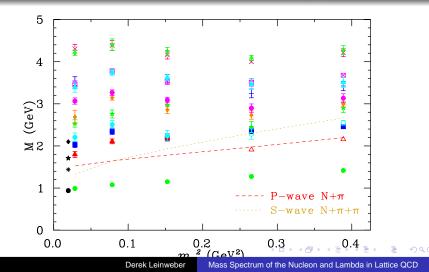
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

m_{π}^2 dependence of the N⁺ Spectrum



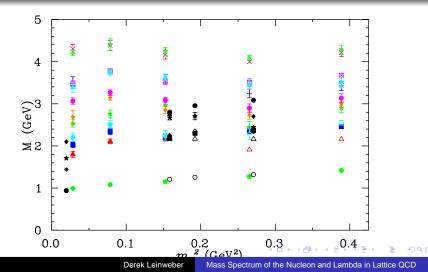
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave function

N^+ Spectrum: S and P-wave $N\pi$ thresholds



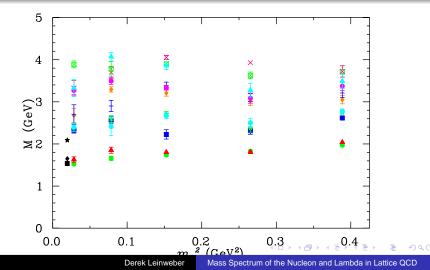
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

N⁺ Spectrum: HSC Comparison



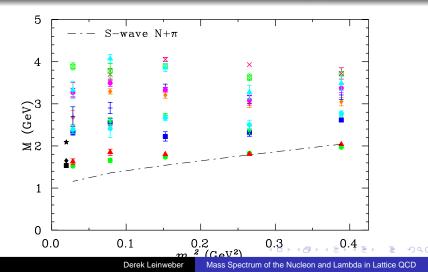
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

m_{π}^2 dependence of the $N_{\overline{2}}^{1-}$ Spectrum



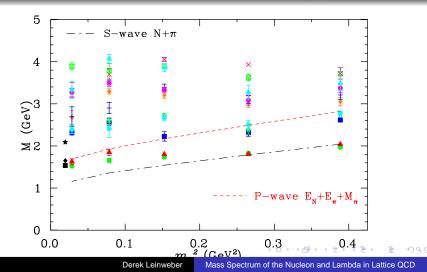
Roper in Dynamical-Fermion QCD N1/2⁻⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

N_2^{1-} Spectrum: S-wave $N\pi$ threshold



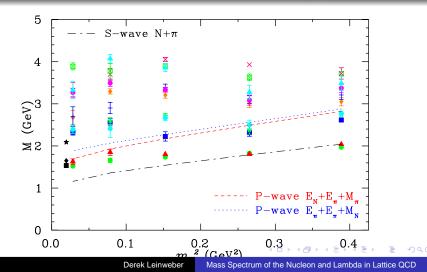
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

$N_{\overline{2}}^{1-}$ Spectrum: S and P-wave $N\pi$ thresholds



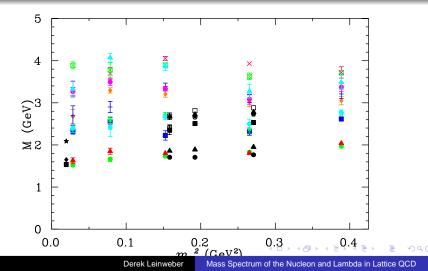
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions

$N_{\overline{2}}^{1-}$ Spectrum: S and P-wave $N\pi$ thresholds



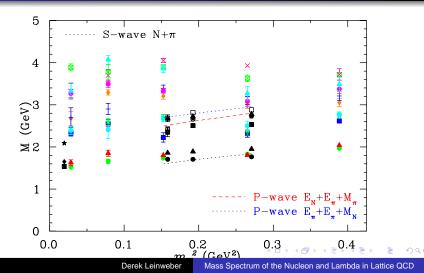
Roper in Dynamical-Fermion QCD M1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions

N_{2}^{1-} Spectrum: with HSC [PRD84(2011)074508]



Roper in Dynamical-Fermion QCD N1/2⁻⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions

N¹₂ Spectrum: with HSC [PRD84(2011)074508]



Roper in Dynamical-Fermion QCD N1/2⁻⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

Wave functions from the lattice

Generalize the baryon annihilation operator to

$$\epsilon^{abc} \left(u^{Ta}(\vec{x} + \vec{d}, t) C\gamma_5 d^b(\vec{x} + \vec{y}, t) \right) u^c(\vec{x} - \vec{d}, t) + \epsilon^{abc} \left(u^{Ta}(\vec{x} - \vec{d}, t) C\gamma_5 d^b(\vec{x} + \vec{y}, t) \right) u^c(\vec{x} + \vec{d}, t)$$

and measure the overlap of this operator with the state as a function of \vec{y} for fixed \vec{d} .

- In this case, one obtains the wave function of the *d* quark.
- At the source, use φ^α = ∑_i u^α_i χ̄_i to create the state α of interest.
- First consider $\vec{d} = 0$; i.e. the distribution of the *d* quark about two *u* quarks at the origin.

Roper in Dynamical-Fermion QCD N1/2⁻⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

Constituent Quark Model Wave Functions

 Consider a coulomb plus ramp potential with spin-dependent terms from

PHYSICAL REVIEW LETTERS

VOLUME 44

26 MAY 1980

NUMBER 21

Quark-Quark Interaction and the Nonrelativistic Quark Model

R. K. Bhaduri, L. E. Cohler, and Y. Nogami Department of Physics, McMaster University, Hamilton, Ontario L8S 4M1, Canada (Received 14 January 1980; revised manuscript received 7 March 1980)

This Letter demonstrates that the nonrelativistic approximation breaks down for the lighter hadrons with the conventional qq one-gluon exchange potential. This is mainly due to the Coulomb and the short-range hyperfine interactions. To overcome this difficulty, some phenomenological interactions with a long-range spin dependence are proposed. The validity of treating the spin-dependent term as a perturbation is examined.

• Numerically solve SE on a periodic volume for the *d* quark

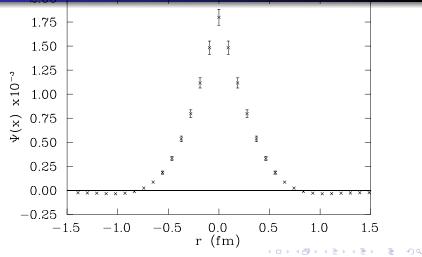
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

Ground-state wave function at lightest quark mass



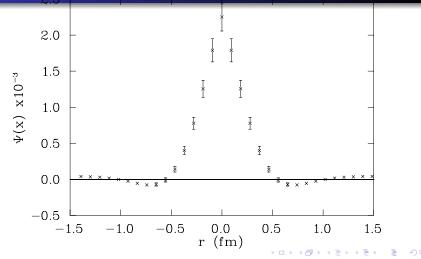
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

Roper wave function



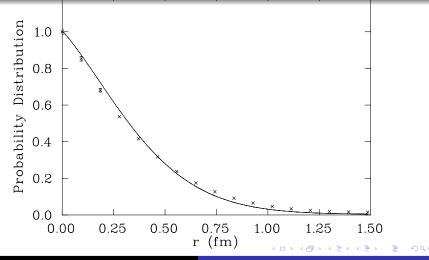
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

2nd excited-state wave function

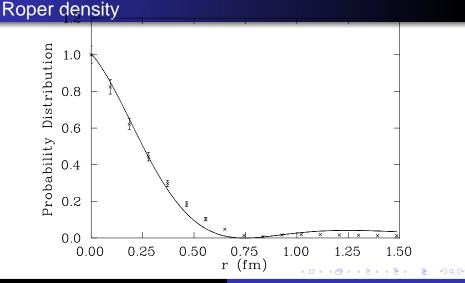


Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

Ground-state density

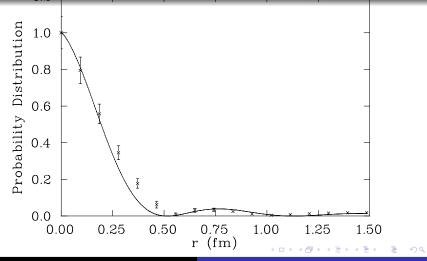


Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Wave functions



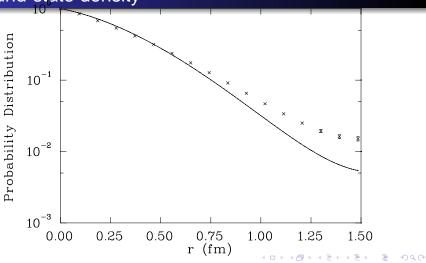
Roper in Dynamical-Fermion QCD N1/2⁻⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

2nd excited-state density

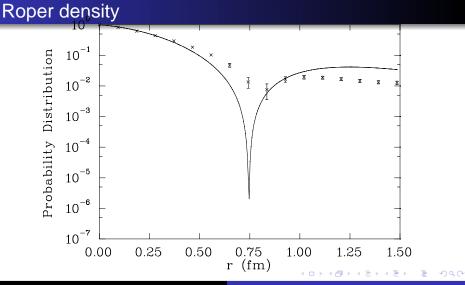


Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions

Ground-state density

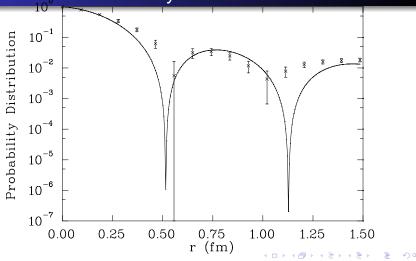


Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions



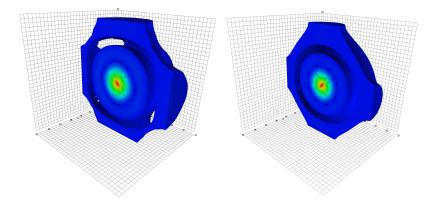
Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

2nd excited-state density



Roper in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

Finite Volume Effects



э.

Roper in Dynamical-Fermion QCD N1/2⁻⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

Projects

Nucleon Structure in the chiral regime

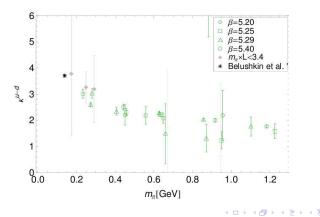
- m_{π} down to \sim 160 MeV
- Nucleon EM form factors, $F_1(q^2)$, $F_2(q^2) \Rightarrow \langle r_1^2 \rangle$, $\langle r_2^2 \rangle$, μ [arXiv:1106.3580]
- Axial charge, g_A ⇒ link to Nathan Hall [arXiv:1206.7034]
- Momentum fraction, $\langle x \rangle$
- Moments of Parton Distribution Functions and Generalised Parton Distribution Functions
- Glue in the Nucleon, e.g. $\langle x \rangle_g$ [arXiv:1205.6410]

くロト (得) (目) (日)

э

Roper in Dynamical-Fermion QCD N1/2⁻⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

Example: Isovector anomalous magnetic moment $\kappa^{(u-d)}$



Roper in Dynamical-Fermion QCD N1/2⁻⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

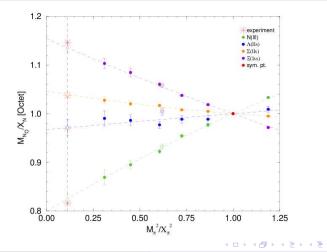
Projects

SU(3)-flavour breaking effects in hadrons

- Start from a world where u, d, s quarks have equal masses (SU(3)_F symmetric limit)
- Monitor the dependence of hadronic observables on the quark mass splittings as they approach their physical values
 - Hadron spectrum [arXiv:1102.5300]
 - Sigma terms [arXiv:1110.4971] \Rightarrow link to Phiala's work
 - Neutron-proton mass splitting [arXiv:1206.3156]
 - Charge symmetry violation in moments of nucleon PDFs (with Ross, Tony and Ian) [arXiv:1012.0215, 1204.3492]
 - Semi-leptonic Hyperon decays $\Rightarrow |V_{us}|$

Roper in Dynamical-Fermion QCD N1/2⁻⁻ State in Dynamical-Fermion QCD Discovering More States Eigenstate Identification Wave functions Nucleon Structure

Example: Octet Baryon Masses



Optimal Regulators Magnetic Moments Electric Charge Radii Resonances

Chiral Effective Field Theory- Outline

- Using chiral effective field theory (χEFT), lattice QCD results can be extrapolated to the physical quark mass.
- Chiral loop integrals from χ EFT contribute to nonanalytic curvature, which becomes significant for small pion masses ($m_q \propto m_{\pi}^2$).
- Using finite-range regularized (FRR) loop integrals, we introduce a regulator, u(k; Λ), to cutoff the ultraviolet divergences in the momentum (k) integral.
- An optimal regularization scale, Λ^{scale}, can be extracted from lattice QCD results.

くロト (得) (目) (日)

Optimal Regulators Magnetic Moments Electric Charge Radii Resonances

Chiral Effective Field Theory- Outline

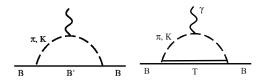
- The optimal scale can be used to perform reliable and robust chiral extrapolations.
- χ EFT can also incorporate finite-volume corrections.
- For more details, see: Power Counting Regime of Chiral Effective Field Theory and Beyond, J.M.M. Hall, D.B. Leinweber (Adelaide U.), R.D. Young (Adelaide U. & Argonne). Feb 2010. 17 pp. Published in Phys.Rev. D82 (2010) 034010.

イロト イポト イヨト イヨト

Optimal Regulators Magnetic Moments Electric Charge Radii Resonances

Magnetic Moment of the Nucleon

 The loop diagrams below are the leading-order contributions to the magnetic moment of the nucleon, μ.



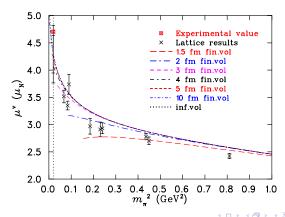
 In applying χEFT, we choose a dipole regulator to cutoff the divergences in the loop integrals:

$$u(k;\Lambda) = \left(1 + \frac{k^2}{\Lambda^2}\right)^{-2}.$$
 (1)

Optimal Regulators Magnetic Moments Electric Charge Radii Resonances

Magnetic Moment of the Nucleon

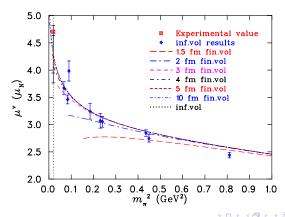
• Chiral extrapolations of μ for several lattice sizes *L*:



Optimal Regulators Magnetic Moments Electric Charge Radii Resonances

Magnetic Moment of the Nucleon

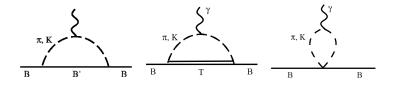
• Chiral extrapolations of μ (infinite-volume data):



Optimal Regulators Magnetic Moments Electric Charge Radii Resonances

Electric Charge Radius of the Nucleon

• The χ EFT loops shown below are the leading-order contributions to the electric charge radius of the nucleon, $\langle r^2 \rangle_E$.

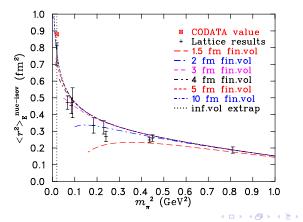


• A dipole regulator is again used in these integrals.

Optimal Regulators Magnetic Moments Electric Charge Radii Resonances

Electric Charge Radius of the Nucleon

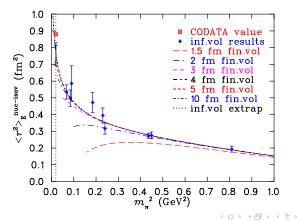
• Chiral extrapolations of $\langle r^2 \rangle_E$ for several lattice sizes *L*:



Optimal Regulators Magnetic Moments Electric Charge Radii Resonances

Electric Charge Radius of the Nucleon

• Chiral extrapolations of $\langle r^2 \rangle_E$, (infinite-volume data):



Optimal Regulators Magnetic Moments Electric Charge Radii Resonances

$\Delta N\pi$ Scattering

- For a nucleon and pion scattering off a Δ-baryon resonance, there is an associated phase shift δ.
- We can write out a *t*-matrix as a function of momentum *k*, or energy, $E = \sqrt{k^2 + m^2}$:

$$T = -\frac{1}{\pi k E} e^{i\delta(k)} \sin \delta(k).$$
(2)

 The *t*-matrix depends on χEFT, and receives inputs such as the coupling strength *g*, and the loop integral below:

• We can plot δ as a function of energy *E* to get a Breit-Wigner type curve, with resonance at 90°.

Optimal Regulators Magnetic Moments Electric Charge Radii Resonances

Scattering Phase Shift

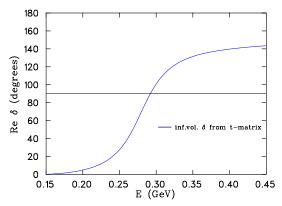


Figure: The phase shift associated with $N\pi$ -scattering with a Δ -baryon intermediate, plotted against *E*, the external energy. $M_{\Delta} = M_N + E_{\text{res}}.$

Optimal Regulators Magnetic Moments Electric Charge Radii Resonances

Relating Finite-Volumes to Experiment

- It is important to find ways of relating finite-volume lattice calculations to experiment.
- One example is Lüscher's formula:

$$\delta(\boldsymbol{k}; \boldsymbol{L}) = \boldsymbol{r}\,\pi - \phi(\boldsymbol{k}\boldsymbol{L}),\tag{3}$$

- which relates the momentum k, associated with an energy level, to the phase shift δ, through some known kinematic function φ.
- We can test Lüscher's formula with an exactly-solvable Hamiltonian model.

イロト イポト イヨト イヨ

Optimal Regulators Magnetic Moments Electric Charge Radii Resonances

A $\Delta N\pi$ Hamiltonian Model

• Baryon resonances can be investigated in a finite volume, by constructing a matrix Hamiltonian model. For the $\Delta N\pi$, we have:

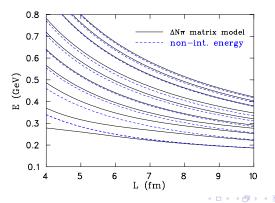
$$H = \begin{pmatrix} \Delta_{0} & g_{\Delta N}(k_{1}) & g_{\Delta N}(k_{2}) & \cdots \\ g_{\Delta N}(k_{1}) & \sqrt{k_{1}^{2} + m_{\pi}^{2}} & 0 & \cdots \\ g_{\Delta N}(k_{2}) & 0 & \sqrt{k_{2}^{2} + m_{\pi}^{2}} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}, \quad (4)$$

• for a bare resonance energy Δ_0 , and couplings $g_{\Delta N}(k)$ derived from χ EFT.

Optimal Regulators Magnetic Moments Electric Charge Radii Resonances

Energy Levels from the Hamiltonian

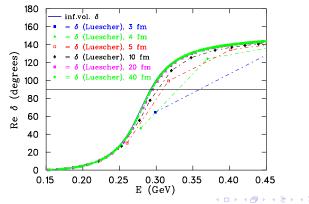
 The ten lowest energy levels from the model. Non-interacting energies shown as dotted lines.



Optimal Regulators Magnetic Moments Electric Charge Radii Resonances

Lüscher's Method for Phase Shifts

 The finite-volume estimates of the phase shift δ, from Lüscher's formula:



Optimal Regulators Magnetic Moments Electric Charge Radii Resonances

An Improved Method for Phase Shifts

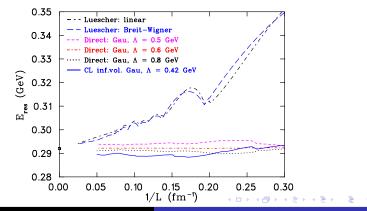
- Clearly, the phase shifts from Lüscher's formula only converge very slowly to the infinite-volume phase shift.
- An improved method involves taking the Hamiltonian model, and constraining its free parameters (e.g. Δ₀, g_{ΔN} & Λ) using lattice data.
- These constrained parameters can be input into the t-matrix formula to obtain a phase shift more directly.

イロト イ押ト イヨト イヨ

Optimal Regulators Magnetic Moments Electric Charge Radii Resonances

The Resonance Position at Finite Volume

• The resonance position ($\delta = 90^{\circ}$) can be plotted vs. 1/*L*, comparing Lüscher's method and the improved method:



An Exotic State? Operator Choice Baryon Form Factors Results

The A(1405)

 The negative-parity ground state of the Λ has a mass of 1405^{+1.3}_{-1.0} MeV.

• Such a low mass is puzzling:

Lies well below the positive-parity Λ(1600).

 Lies lower than the N(1535), yet has a valence strange quark.

イロト イポト イヨト イヨト

An Exotic State? Operator Choice Baryon Form Factors Results

The A(1405)

- The negative-parity ground state of the Λ has a mass of 1405^{+1.3}_{-1.0} MeV.
- Such a low mass is puzzling:
 - Lies well below the positive-parity $\Lambda(1600)$.
 - Lies lower than the *N*(1535), yet has a valence strange quark.

イロト イポト イヨト イヨ

An Exotic State? Operator Choice Baryon Form Factors Results

The A(1405)

Our recent study has successfully isolated three low-lying states.

BJ Menadue et al., Phys. Rev. Lett. 108, 112001 (2012), arXiv:1109.6716

- The lowest state has a mass trend the reproduces the Λ(1405) in the physical limit.
- Extend this to investigate the electromagnetic structure of this unusual state.

イロト イポト イヨト イヨ

An Exotic State? Operator Choice Baryon Form Factors Results

Operator Choice

- There are a variety of interpolating operators that couple to the Λ baryon.
- We use the flavour-symmetry-specific operators

$$\begin{split} \chi_1^8 &= \frac{1}{\sqrt{6}} \epsilon_{abc} (2(u_a^{\mathrm{T}} C \gamma_5 d_b) s_c + (u_a^{\mathrm{T}} C \gamma_5 s_b) d_c - (d_a^{\mathrm{T}} C \gamma_5 s_b) u_c) \\ \chi_2^8 &= \frac{1}{\sqrt{6}} \epsilon_{abc} (2(u_a^{\mathrm{T}} C d_b) \gamma_5 s_c + (u_a^{\mathrm{T}} C s_b) \gamma_5 d_c - (d_a^{\mathrm{T}} C s_b) \gamma_5 u_c) \\ \chi^1 &= -2 \epsilon_{abc} (-(u_a^{\mathrm{T}} C \gamma_5 d_b) s_c + (u_a^{\mathrm{T}} C \gamma_5 s_b) d_c - (d_a^{\mathrm{T}} C \gamma_5 s_b) u_c) \end{split}$$

• We also use smearing at the source and sink (at 16 and 100 sweeps) to increase the operator basis.

イロト イポト イヨト イヨ

An Exotic State? Operator Choice Baryon Form Factors Results

Extracting Baryon Form Factors

 Given eigenstate-projected two- and three-point correlation functions G_α and G^μ_α, construct the ratio

$$\begin{split} \mathsf{R}^{\mu}_{\alpha}(\mathsf{\Gamma}_{2},\mathsf{\Gamma}_{1};\boldsymbol{p}',\boldsymbol{p};t_{2},t_{1}) := \\ & \left(\frac{G^{\mu}_{\alpha}(\mathsf{\Gamma}_{1};\boldsymbol{p}',\boldsymbol{p};t_{2},t_{1})G^{\mu}_{\alpha}(\mathsf{\Gamma}_{1};\boldsymbol{p},\boldsymbol{p}';t_{2},t_{1})}{G_{\alpha}(\mathsf{\Gamma}_{2};\boldsymbol{p}';t_{2})G_{\alpha}(\mathsf{\Gamma}_{2};\boldsymbol{p};t_{2})}\right)^{1/2} \end{split}$$

• We then define the reduced ratio

$$\overline{R}^{\mu}_{\alpha} := \left(rac{2E_{
ho}}{E_{
ho}+M}
ight)^{1/2} \left(rac{2E_{
ho'}}{E_{
ho'}+M}
ight)^{1/2} R^{\mu}_{\alpha}.$$

< □ > < 同 > < 回 > < 回 > < 回 > < 回

An Exotic State? Operator Choice Baryon Form Factors Results

Extracting Baryon Form Factors

 A suitable choice of the spin projectors Γ₁ and Γ₂ now allows us to directly extract the Sachs form factors:

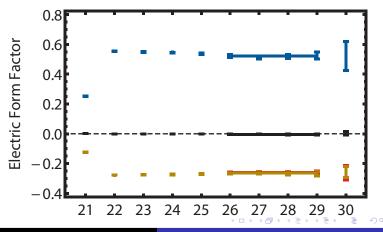
$$\begin{split} G_{\mathsf{E}}^{\alpha\pm}(\mathsf{Q}^2) &= \overline{\mathsf{R}}_{\alpha}^{\mu}(\mathsf{\Gamma}_4^{\pm},\mathsf{\Gamma}_4^{\pm};q,0,t_2,t_1),\\ |\varepsilon_{ijk}q^i|G_{\mathsf{M}}^{\alpha\pm}(\mathsf{Q}^2) &= (\mathsf{E}_q+\mathsf{M})\overline{\mathsf{R}}_{\alpha}^{\mu}(\mathsf{\Gamma}_4^{\pm},\mathsf{\Gamma}_j^{\pm};q,0,t_2,t_1), \end{split}$$

where the \pm identifies the parity of the state α and

$$\begin{split} \Gamma_{j}^{+} &= \frac{1}{2} \begin{bmatrix} \sigma_{j} & 0 \\ 0 & 0 \end{bmatrix}, & \Gamma_{4}^{+} &= \frac{1}{2} \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} \\ \Gamma_{j}^{-} &= \gamma_{5} \Gamma_{j}^{+} \gamma_{5} &= \frac{1}{2} \begin{bmatrix} 0 & 0 \\ 0 & \sigma_{j} \end{bmatrix}, & \Gamma_{4}^{-} &= \gamma_{5} \Gamma_{4}^{+} \gamma_{5} &= \frac{1}{2} \begin{bmatrix} 0 & 0 \\ 0 & I \end{bmatrix} \end{split}$$

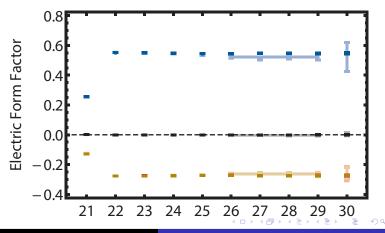
An Exotic State? Operator Choice Baryon Form Factors Results

Electric Form Factor



An Exotic State? Operator Choice Baryon Form Factors Results

Electric Form Factor



An Exotic State? Operator Choice Baryon Form Factors Results

Electric Form Factor

sector	Λ(1405)	Λ
	0.785(11)	0.8165(28)
strange	0.795(13)	0.8203(27)

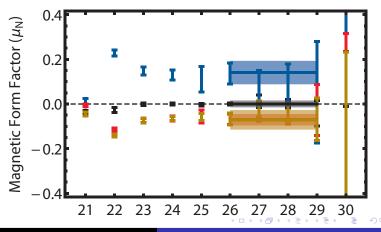
Derek Leinweber Mass Spectrum of the Nucleon and Lambda in Lattice QCD

イロト 不得 トイヨト イヨト

э

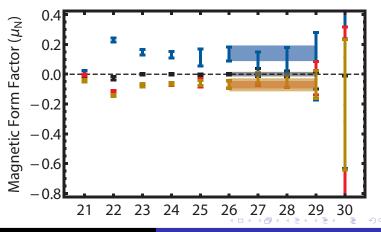
An Exotic State? Operator Choice Baryon Form Factors Results

Magnetic Form Factor



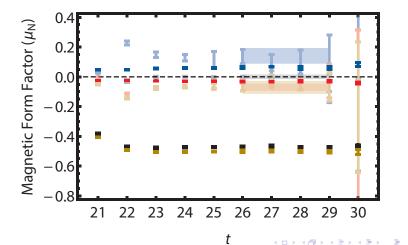
An Exotic State? Operator Choice Baryon Form Factors Results

Magnetic Form Factor



An Exotic State? Operator Choice Baryon Form Factors Results

Magnetic Form Factor



An Exotic State? Operator Choice Baryon Form Factors Results

Magnetic Form Factor

sector Λ(1405) Λ light 0.211(79) 0.0894(68) strange 0.21(13) 1.493(12)

Values are in units of μ_{N} .

< < >> < <</>

- < ⊒ >

An Exotic State? Operator Choice Baryon Form Factors Results

Charge Square Radii

sector	$\langle r_{\rm E}^2 \rangle^{\Lambda(1405)}$	$\langle r_{\rm E}^2 \rangle^{\Lambda}$	$\langle r_{\rm M}^2 \rangle^{\Lambda(1405)}$	$\langle r_{\rm M}^2 \rangle^{\Lambda}$
light	0.422(27)	0.3527(50)	0.224(66)	0.0591(38)
strange	0.399(32)	0.3442(84)	0.210(93)	0.959(20)

Values are in units of fm.

イロト イボト イヨト イヨト

An Exotic State? Operator Choice Baryon Form Factors Results

Magnetic Moment

sector Λ(1405) Λ light 0.269(98) 0.1095(97) strange 0.210(93) 1.820(15)

Values are in units of μ_{N} .

< < >> < <</>

- < ⊒ >

э

Roper *N*1/2⁻⁻ Λ(1405)

Summary

- Several fermion-source and -sink smearing levels have been used to construct correlation matrices.
- A variety of 4 × 4, 8 × 8 and 12 × 12 matrices have been considered to explore the eigenstate energies revealed by different interpolating field structures.
- The three-quark wave functions are reminiscent of early quark models.
- The approach of the Roper to the chiral limit is significantly different in quenched and full QCD.
 - An indication of significant mesonic dressings?

イロト イポト イヨト イヨト

Roper N1/2⁻ Λ(1405)

N1/2⁻

- The *N*1/2⁻ results in quenched and dynamical QCD reveal significant differences in the approach to the physical point.
- A level crossing between the Roper and $N1/2^-$ states is anticipated in full QCD at $m_{\pi} \simeq 150$ MeV, just above the physical pion mass.
- The approach to the experimentally measured masses in full QCD is encouraging.
- The effects of the finite volume on self-energy contributions and associated avoided level crossings remains to be resolved.

ヘロト ヘ帰 ト ヘヨト ヘヨト

The A(1405)

- The mass trend of the lowest lying state is consistent with the physical Λ(1405).
- The state can be accessed with a standard three-quark operator.
- It is predominantly flavour-singlet.
- The correlation-matrix analysis is vital to removing nearby excited-state contaminations.
- Currently examining the distribution of charge via electromagnetic form factors.

イロト イポト イヨト イヨト

Roper *N*1/2⁻⁻ **Λ(1405)**

Hadron Spectrum Collaboration Results Comparison

- At the heaviest mass compared, we find the same number of N⁺ states and qualitative agreement with the spectral energies.
- Finite-volume shifting of the P-wave $N\pi$ threshold is apparent in the spectra.
- Low-lying multi-particle states are suppressed on our large volume lattice for the three lightest quark masses.
- Qualitative agreement of the remaining *N*⁺ states is manifest.
- Qualitative agreement is also observed for the lowest lying N⁻ states.
- Derivatives provided through the lower components of the Dirac spinors are sufficient to access the N¹/₂ spectrum.