An improved chiral expansion using a pion-mass dispersion relation

Jonathan Hall CSSM, University of Adelaide

Vladimir Pascalutsa

KPH, Johannes Gutenberg Universität, Mainz

Overview

- Aims
- Introduction
- The pion-mass dispersion relation
 - Example: the nucleon mass
 - Subtractions & renormalization
- Adding in finite-range regularization (FRR)
- Baryon chiral perturbation theory (B χ PT)
- Confronting the data: chiral extrapolation
- Conclusion

- to understand the chiral behaviour of hadrons, and obtain a quantitative description of chiral symmetry breaking.
- to improve relativistically upon the properties of the heavy-baryon expansion, leading to baryon chiral perturbation theory ($B\chi PT$).
- to import the method of finite-range regularization (FRR) without compromising any symmetries, whilst inheriting its advantageous features.
- to perform a more reliable chiral extrapolation of lattice QCD results, i.e. reducing the systematic uncertainty.

- to understand the chiral behaviour of hadrons, and obtain a quantitative description of chiral symmetry breaking.
- to improve relativistically upon the properties of the heavy-baryon expansion, leading to baryon chiral perturbation theory ($B\chi PT$).
- to import the method of finite-range regularization (FRR) without compromising any symmetries, whilst inheriting its advantageous features.
- to perform a more reliable chiral extrapolation of lattice QCD results, i.e. reducing the systematic uncertainty.

- to understand the chiral behaviour of hadrons, and obtain a quantitative description of chiral symmetry breaking.
- to improve relativistically upon the properties of the heavy-baryon expansion, leading to baryon chiral perturbation theory ($B\chi PT$).
- to import the method of finite-range regularization (FRR) without compromising any symmetries, whilst inheriting its advantageous features.
- to perform a more reliable chiral extrapolation of lattice QCD results, i.e. reducing the systematic uncertainty.

- to understand the chiral behaviour of hadrons, and obtain a quantitative description of chiral symmetry breaking.
- to improve relativistically upon the properties of the heavy-baryon expansion, leading to baryon chiral perturbation theory ($B\chi PT$).
- to import the method of finite-range regularization (FRR) without compromising any symmetries, whilst inheriting its advantageous features.
- to perform a more reliable chiral extrapolation of lattice QCD results, i.e. reducing the systematic uncertainty.

Introduction

- A Kramers-Kronig dispersion relation tells us about the analyticity of a complex function.
- Recall that an analytic function may be written f = u + iv
 (u, v: real-valued on some domain Ω). The real part of f, (i.e. u)
 can be defined in terms of its harmonic conjugate (v) via a Hilbert
 transform:

$$u(t_0) = rac{1}{\pi} \mathcal{P} \int_{-\infty}^{\infty} \mathrm{d}t rac{v(t)}{t-t_0}, \quad t_0, t \in \Omega.$$

 We'll find: in chiral perturbation theory (χPT), t equals m_q, and the principal value integral becomes an integral over the negative real-axis of m_q.

- A Kramers-Kronig dispersion relation tells us about the analyticity of a complex function.
- Recall that an analytic function may be written f = u + iv(*u*, *v*: real-valued on some domain Ω). The real part of *f*, (i.e. *u*) can be defined in terms of its harmonic conjugate (*v*) via a Hilbert transform:

$$u(t_0) = \frac{1}{\pi} \mathcal{P} \int_{-\infty}^{\infty} \mathrm{d}t \frac{v(t)}{t-t_0}, \quad t_0, t \in \Omega.$$

 We'll find: in chiral perturbation theory (χPT), t equals m_q, and the principal value integral becomes an integral over the negative real-axis of m_q.

- A Kramers-Kronig dispersion relation tells us about the analyticity of a complex function.
- Recall that an analytic function may be written f = u + iv(*u*, *v*: real-valued on some domain Ω). The real part of *f*, (i.e. *u*) can be defined in terms of its harmonic conjugate (*v*) via a Hilbert transform:

$$u(t_0) = \frac{1}{\pi} \mathcal{P} \int_{-\infty}^{\infty} \mathrm{d}t \frac{v(t)}{t-t_0}, \quad t_0, t \in \Omega.$$

 We'll find: in chiral perturbation theory (χPT), t equals m_q, and the principal value integral becomes an integral over the negative real-axis of m_q.

- A Kramers-Kronig dispersion relation tells us about the analyticity of a complex function.
- Recall that an analytic function may be written f = u + iv
 (u, v: real-valued on some domain Ω). The real part of f, (i.e. u)
 can be defined in terms of its harmonic conjugate (v) via a Hilbert
 transform:

$$u(t_0) = \frac{1}{\pi} \mathcal{P} \int_{-\infty}^{\infty} \mathrm{d}t \frac{v(t)}{t-t_0}, \quad t_0, t \in \Omega.$$

• We'll find: in chiral perturbation theory (χ PT), t equals m_q , and the principal value integral becomes an integral over the negative real-axis of m_q .

- In χ PT, the quark mass, m_q , is not a fixed parameter. We expand about the 'chiral limit', $m_q \rightarrow 0$, to obtain chiral formulae.
- Observables such as nucleon mass (f ≡ M_N) or anomalous magnetic moment (AMM) (f ≡ κ) become functions of m_q.
- The quark mass is related to the pion-mass squared by the Gell-Mann-Oakes-Renner Relation (GOR): $m_q \propto m_{\pi}^2$.
- Looking at the complex plane of m²_π, the observables, f, are analytic- except for a branch-cut in the negative real-axis, associated with pion-production.

- In χ PT, the quark mass, m_q , is not a fixed parameter. We expand about the 'chiral limit', $m_q \rightarrow 0$, to obtain chiral formulae.
- Observables such as nucleon mass (f ≡ M_N) or anomalous magnetic moment (AMM) (f ≡ κ) become functions of m_q.
- The quark mass is related to the pion-mass squared by the Gell-Mann–Oakes–Renner Relation (GOR): $m_q \propto m_{\pi}^2$.
- Looking at the complex plane of m²_π, the observables, f, are analytic- except for a branch-cut in the negative real-axis, associated with pion-production.

- In χ PT, the quark mass, m_q , is not a fixed parameter. We expand about the 'chiral limit', $m_q \rightarrow 0$, to obtain chiral formulae.
- Observables such as nucleon mass (f ≡ M_N) or anomalous magnetic moment (AMM) (f ≡ κ) become functions of m_q.
- The quark mass is related to the pion-mass squared by the Gell-Mann-Oakes-Renner Relation (GOR): $m_q \propto m_{\pi}^2$.
- Looking at the complex plane of m²_π, the observables, f, are analytic- except for a branch-cut in the negative real-axis, associated with pion-production.

- In χ PT, the quark mass, m_q , is not a fixed parameter. We expand about the 'chiral limit', $m_q \rightarrow 0$, to obtain chiral formulae.
- Observables such as nucleon mass (f ≡ M_N) or anomalous magnetic moment (AMM) (f ≡ κ) become functions of m_q.
- The quark mass is related to the pion-mass squared by the Gell-Mann-Oakes-Renner Relation (GOR): $m_q \propto m_{\pi}^2$.
- Looking at the complex plane of m_{π}^2 , the observables, f, are analytic- except for a branch-cut in the negative real-axis, associated with pion-production.

Figure: The complex $t = m_{\pi}^2$ plane, with the **branch-cut** along the negative real axis, and the contour indicating the analyticity domain.

$$\operatorname{Re} f(m_{\pi}^{2}) = -\frac{1}{\pi} \int_{-\infty}^{0} \mathrm{d}t \frac{\operatorname{Im} f(t)}{t - m_{\pi}^{2}}.$$

- We can analyze the analytic properties of the observables, *f*, very easily:
- any disruption to chiral symmetry is explicitly realized. Violations of analyticity (away from the branch-cut) become apparent immediately.
- the dispersion relation can be used to obtain relativistically improved chiral formulae.

$$\operatorname{Re} f(m_{\pi}^{2}) = -\frac{1}{\pi} \int_{-\infty}^{0} \mathrm{d}t \frac{\operatorname{Im} f(t)}{t - m_{\pi}^{2}}$$

- We can analyze the analytic properties of the observables, *f*, very easily:
- any disruption to chiral symmetry is explicitly realized. Violations of analyticity (away from the branch-cut) become apparent immediately.
- the dispersion relation can be used to obtain relativistically improved chiral formulae.

$$\operatorname{Re} f(m_{\pi}^{2}) = -\frac{1}{\pi} \int_{-\infty}^{0} \mathrm{d}t \frac{\operatorname{Im} f(t)}{t - m_{\pi}^{2}}$$

- We can analyze the analytic properties of the observables, *f*, very easily:
- any disruption to chiral symmetry is explicitly realized. Violations of analyticity (away from the branch-cut) become apparent immediately.
- the dispersion relation can be used to obtain relativistically improved chiral formulae.

$$\operatorname{Re} f(m_{\pi}^{2}) = -\frac{1}{\pi} \int_{-\infty}^{0} \mathrm{d}t \frac{\operatorname{Im} f(t)}{t - m_{\pi}^{2}}$$

- We can analyze the analytic properties of the observables, *f*, very easily:
- any disruption to chiral symmetry is explicitly realized. Violations of analyticity (away from the branch-cut) become apparent immediately.
- the dispersion relation can be used to obtain relativistically improved chiral formulae.

$$\operatorname{Re} f(m_{\pi}^{2}) = -\frac{1}{\pi} \int_{-\infty}^{0} \mathrm{d}t \frac{\operatorname{Im} f(t)}{t - m_{\pi}^{2}}$$

- We can analyze the analytic properties of the observables, *f*, very easily:
- any disruption to chiral symmetry is explicitly realized. Violations of analyticity (away from the branch-cut) become apparent immediately.
- the dispersion relation can be used to obtain relativistically improved chiral formulae.

The pion-mass dispersion relation

An improved chiral expansion using a pion-mass dispersion relation

- Consider the mass of the nucleon, $M_N(m_\pi^2)$, as an example.
- In χ PT, the chiral expansion formula for M_N , to order m_{π}^3 , is:

$$M_N = \stackrel{\circ}{M}_N + c_2 m_\pi^2 + \chi m_\pi^3.$$

- The formula contains analytic and nonanalytic terms. χ is a constant (fixing g_A , f_{π} , etc. to their phenomenological values).
- The nonanalytic contribution comes from the leading-order chiral loop integral.

- Consider the mass of the nucleon, $M_N(m_{\pi}^2)$, as an example.
- In χ PT, the chiral expansion formula for M_N , to order m_{π}^3 , is:

$$M_N = \stackrel{\circ}{M}_N + c_2 m_\pi^2 + \chi m_\pi^3.$$

- The formula contains analytic and nonanalytic terms. χ is a constant (fixing g_A , f_{π} , etc. to their phenomenological values).
- The nonanalytic contribution comes from the leading-order chiral loop integral.

- Consider the mass of the nucleon, $M_N(m_{\pi}^2)$, as an example.
- In χ PT, the chiral expansion formula for M_N , to order m_π^3 , is:

$$M_N = \stackrel{\circ}{M}_N + c_2 m_\pi^2 + \chi m_\pi^3.$$

- The formula contains analytic and nonanalytic terms. χ is a constant (fixing g_A , f_{π} , etc. to their phenomenological values).
- The nonanalytic contribution comes from the leading-order chiral loop integral.

- Consider the mass of the nucleon, $M_N(m_\pi^2)$, as an example.
- In χ PT, the chiral expansion formula for M_N , to order m_{π}^3 , is:

$$M_N = \stackrel{\circ}{M}_N + c_2 m_\pi^2 + \chi m_\pi^3.$$

- The formula contains analytic and nonanalytic terms. χ is a constant (fixing g_A , f_{π} , etc. to their phenomenological values).
- The nonanalytic contribution comes from the leading-order chiral loop integral.

10 / 51

- Consider the mass of the nucleon, $M_N(m_{\pi}^2)$, as an example.
- In χ PT, the chiral expansion formula for M_N , to order m_{π}^3 , is:

$$M_N = \stackrel{\circ}{M}_N + c_2 m_{\pi}^2 + \chi m_{\pi}^3.$$

- The formula contains analytic and nonanalytic terms. χ is a constant (fixing g_A , f_{π} , etc. to their phenomenological values).
- The nonanalytic contribution comes from the leading-order chiral loop integral.

10 / 51

• The leading-order 1-pion loop takes the following simplified form in heavy-baryon χ PT (HB χ PT):

• The leading-order 1-pion loop takes the following simplified form in heavy-baryon χ PT (HB χ PT):

• The leading-order 1-pion loop takes the following simplified form in heavy-baryon χ PT (HB χ PT):

• The leading-order 1-pion loop takes the following simplified form in heavy-baryon χ PT (HB χ PT):

$$\Sigma^{
m HB}_{\pi N}(m_{\pi}^2) = -rac{1}{\pi} \int_{-\infty}^0 {
m d}t rac{\chi \, (-t)^{3/2}}{t-m_{\pi}^2} \ \ \leftarrow$$

- This formula is simply the dispersion relation, with $\text{Im} \Sigma_{\pi N}^{\text{HB}}(t) = \chi (-t)^{3/2}$, and t taking values on the negative real-axis branch-cut in the complex plane.
- The dispersion relation is satisfied, since the nonanalytic term, χm_{π}^3 , from the chiral formula is the only contributor to Im $\Sigma_{\pi N}^{\text{HB}}(m_{\pi}^2)$ at order m_{π}^3 .
- We shall use the *t*-integration form of the loop integral from now on, for two main reasons:
 - It is explicitly clear that no symmetries of the theory are violated, even if a (sharp) finite-range cutoff in the *t*-integral is introduced.
 - It is usually easier to calculate the imaginary part of the loop contribution than to evaluate the pole- and angular-integrations (especially without heavy-baryon theory, or for multi-loop expressions).

12 / 51

- This formula is simply the dispersion relation, with $\text{Im} \Sigma_{\pi N}^{\text{HB}}(t) = \chi (-t)^{3/2}$, and t taking values on the negative real-axis branch-cut in the complex plane.
- The dispersion relation is satisfied, since the nonanalytic term, χm_{π}^3 , from the chiral formula is the only contributor to Im $\Sigma_{\pi N}^{\text{HB}}(m_{\pi}^2)$ at order m_{π}^3 .
- We shall use the *t*-integration form of the loop integral from now on, for two main reasons:
 - It is explicitly clear that no symmetries of the theory are violated, even if a (sharp) finite-range cutoff in the *t*-integral is introduced.
 - It is usually easier to calculate the imaginary part of the loop contribution than to evaluate the pole- and angular-integrations (especially without heavy-baryon theory, or for multi-loop expressions).

- This formula is simply the dispersion relation, with $\text{Im} \Sigma_{\pi N}^{\text{HB}}(t) = \chi (-t)^{3/2}$, and t taking values on the negative real-axis branch-cut in the complex plane.
- The dispersion relation is satisfied, since the nonanalytic term, χm_{π}^3 , from the chiral formula is the only contributor to Im $\Sigma_{\pi N}^{\text{HB}}(m_{\pi}^2)$ at order m_{π}^3 .
- We shall use the *t*-integration form of the loop integral from now on, for two main reasons:
 - It is explicitly clear that no symmetries of the theory are violated, even if a (sharp) finite-range cutoff in the *t*-integral is introduced.
 - It is usually easier to calculate the imaginary part of the loop contribution than to evaluate the pole- and angular-integrations (especially without heavy-baryon theory, or for multi-loop expressions).

- This formula is simply the dispersion relation, with $\text{Im} \Sigma_{\pi N}^{\text{HB}}(t) = \chi (-t)^{3/2}$, and t taking values on the negative real-axis branch-cut in the complex plane.
- The dispersion relation is satisfied, since the nonanalytic term, χm_{π}^3 , from the chiral formula is the only contributor to Im $\Sigma_{\pi N}^{\text{HB}}(m_{\pi}^2)$ at order m_{π}^3 .
- We shall use the *t*-integration form of the loop integral from now on, for two main reasons:
 - It is explicitly clear that no symmetries of the theory are violated, even if a (sharp) finite-range cutoff in the *t*-integral is introduced.
 - It is usually easier to calculate the imaginary part of the loop contribution than to evaluate the pole- and angular-integrations (especially without heavy-baryon theory, or for multi-loop expressions).

- This formula is simply the dispersion relation, with $\text{Im} \Sigma_{\pi N}^{\text{HB}}(t) = \chi (-t)^{3/2}$, and t taking values on the negative real-axis branch-cut in the complex plane.
- The dispersion relation is satisfied, since the nonanalytic term, χm_{π}^3 , from the chiral formula is the only contributor to Im $\Sigma_{\pi N}^{\text{HB}}(m_{\pi}^2)$ at order m_{π}^3 .
- We shall use the *t*-integration form of the loop integral from now on, for two main reasons:
 - It is explicitly clear that no symmetries of the theory are violated, even if a (sharp) finite-range cutoff in the *t*-integral is introduced.
 - It is usually easier to calculate the imaginary part of the loop contribution than to evaluate the pole- and angular-integrations (especially without heavy-baryon theory, or for multi-loop expressions).

- We would like to write the chiral formula for $M_N(m_{\pi}^2)$ in terms of our new dispersion relation.
- $\Sigma_{\pi N}^{\text{HB}}(m_{\pi}^2)$ gives us the correct nonanalytic contribution to M_N , but also gives extra analytic terms:

$$\Sigma_{\pi N}^{\mathrm{HB}}(m_{\pi}^2) = b_0 + b_2 m_{\pi}^2 + \chi m_{\pi}^3.$$

• The extra terms b_0 and $b_2 m_{\pi}^2$ should be absorbed (renormalized) into $\stackrel{\circ}{M}_N$ and $c_2 m_{\pi}^2$, respectively. Thus, we must subtract off the extra terms from the loop integral $\Sigma_{\pi N}^{\text{HB}}$. (Use C.I.F. for derivatives):

$$\Sigma^{
m HB}_{\pi N}(m^2_{\pi}) - \Sigma^{
m HB}_{\pi N}(0) - \Sigma^{
m HB}_{\pi N}{}'(0)m^2_{\pi} = -rac{1}{\pi}\int_{-\infty}^0 {
m d}t rac{{
m Im}\,\Sigma^{
m HB}_{\pi N}(t)}{t-m^2_{\pi}}\left(rac{m^2_{\pi}}{t}
ight)^2$$

• For the nucleon mass, evidently two subtractions are required (n = 2), and $\stackrel{\circ}{M}_N$ and c_2 are the 'subtraction constants'.

13 / 51

- We would like to write the chiral formula for $M_N(m_{\pi}^2)$ in terms of our new dispersion relation.
- $\Sigma_{\pi N}^{\text{HB}}(m_{\pi}^2)$ gives us the correct nonanalytic contribution to M_N , but also gives extra analytic terms:

$$\Sigma^{\rm HB}_{\pi N}(m_{\pi}^2) = b_0 + b_2 m_{\pi}^2 + \chi m_{\pi}^3.$$

 The extra terms b₀ and b₂m²_π should be absorbed (renormalized) ^o m_N and c₂m²_π, respectively. Thus, we must subtract off the extra terms from the loop integral Σ^{HB}_{πN}. (Use C.I.F. for derivatives):

$$\Sigma^{
m HB}_{\pi N}(m^2_{\pi}) - \Sigma^{
m HB}_{\pi N}(0) - \Sigma^{
m HB}_{\pi N}{}'(0)m^2_{\pi} = -rac{1}{\pi}\int_{-\infty}^0 {
m d}t rac{{
m Im}\,\Sigma^{
m HB}_{\pi N}(t)}{t-m^2_{\pi}}\left(rac{m^2_{\pi}}{t}
ight)^2$$

- We would like to write the chiral formula for $M_N(m_{\pi}^2)$ in terms of our new dispersion relation.
- $\Sigma_{\pi N}^{\text{HB}}(m_{\pi}^2)$ gives us the correct nonanalytic contribution to M_N , but also gives extra analytic terms:

$$\Sigma_{\pi N}^{\rm HB}(m_{\pi}^2) = b_0 + b_2 m_{\pi}^2 + \chi m_{\pi}^3.$$

• The extra terms b_0 and $b_2 m_{\pi}^2$ should be absorbed (renormalized) into $\stackrel{\circ}{M}_N$ and $c_2 m_{\pi}^2$, respectively. Thus, we must subtract off the extra terms from the loop integral $\Sigma_{\pi N}^{\text{HB}}$. (Use C.I.F. for derivatives):

$$\Sigma^{
m HB}_{\pi N}(m^2_{\pi}) - \Sigma^{
m HB}_{\pi N}(0) - \Sigma^{
m HB}_{\pi N}{}'(0)m^2_{\pi} = -rac{1}{\pi}\int_{-\infty}^0 {
m d}t rac{{
m Im}\,\Sigma^{
m HB}_{\pi N}(t)}{t-m^2_{\pi}}\left(rac{m^2_{\pi}}{t}
ight)^2$$

• For the nucleon mass, evidently two subtractions are required (n = 2), and $\stackrel{\circ}{M}_N$ and c_2 are the 'subtraction constants'.

13 / 51

- We would like to write the chiral formula for $M_N(m_\pi^2)$ in terms of our new dispersion relation.
- $\Sigma_{\pi N}^{\text{HB}}(m_{\pi}^2)$ gives us the correct nonanalytic contribution to M_N , but also gives extra analytic terms:

$$\Sigma_{\pi N}^{\mathrm{HB}}(m_{\pi}^{2}) = b_{0} + b_{2}m_{\pi}^{2} + \chi m_{\pi}^{3}.$$

• The extra terms b_0 and $b_2 m_{\pi}^2$ should be absorbed (renormalized) into $\stackrel{\circ}{M}_N$ and $c_2 m_{\pi}^2$, respectively. Thus, we must subtract off the extra terms from the loop integral $\Sigma_{\pi N}^{\text{HB}}$. (Use C.I.F. for derivatives):

$$\Sigma_{\pi N}^{
m HB}(m_{\pi}^2) - \Sigma_{\pi N}^{
m HB}(0) - \Sigma_{\pi N}^{
m HB}'(0) m_{\pi}^2 = -\frac{1}{\pi} \int_{-\infty}^0 dt \frac{\mathrm{Im} \, \Sigma_{\pi N}^{
m HB}(t)}{t - m_{\pi}^2} \left(\frac{m_{\pi}^2}{t}\right)^2$$

- We would like to write the chiral formula for $M_N(m_\pi^2)$ in terms of our new dispersion relation.
- $\Sigma_{\pi N}^{\text{HB}}(m_{\pi}^2)$ gives us the correct nonanalytic contribution to M_N , but also gives extra analytic terms:

$$\Sigma_{\pi N}^{\mathrm{HB}}(m_{\pi}^2) = b_0 + b_2 m_{\pi}^2 + \chi m_{\pi}^3.$$

• The extra terms b_0 and $b_2 m_{\pi}^2$ should be absorbed (renormalized) into $\stackrel{\circ}{M}_N$ and $c_2 m_{\pi}^2$, respectively. Thus, we must subtract off the extra terms from the loop integral $\Sigma_{\pi N}^{\text{HB}}$. (Use C.I.F. for derivatives):

$$\Sigma^{\mathrm{HB}}_{\pi N}(m_\pi^2) - \Sigma^{\mathrm{HB}}_{\pi N}(0) - \Sigma^{\mathrm{HB}}_{\pi N}{}'(0)m_\pi^2 = -rac{1}{\pi}\int_{-\infty}^0 \mathrm{d}t rac{\mathrm{Im}\,\Sigma^{\mathrm{HB}}_{\pi N}(t)}{t-m_\pi^2}\left(rac{m_\pi^2}{t}
ight)^2$$

- We would like to write the chiral formula for $M_N(m_\pi^2)$ in terms of our new dispersion relation.
- $\Sigma_{\pi N}^{\text{HB}}(m_{\pi}^2)$ gives us the correct nonanalytic contribution to M_N , but also gives extra analytic terms:

$$\Sigma_{\pi N}^{\mathrm{HB}}(m_{\pi}^2) = b_0 + b_2 m_{\pi}^2 + \chi m_{\pi}^3.$$

• The extra terms b_0 and $b_2 m_{\pi}^2$ should be absorbed (renormalized) into $\stackrel{\circ}{M}_N$ and $c_2 m_{\pi}^2$, respectively. Thus, we must subtract off the extra terms from the loop integral $\Sigma_{\pi N}^{\text{HB}}$. (Use C.I.F. for derivatives):

$$\Sigma^{\mathrm{HB}}_{\pi N}(m^2_{\pi}) - \Sigma^{\mathrm{HB}}_{\pi N}(0) - \Sigma^{\mathrm{HB}}_{\pi N}{}'(0)m^2_{\pi} = -rac{1}{\pi}\int_{-\infty}^0 \mathrm{d}t rac{\mathrm{Im}\,\Sigma^{\mathrm{HB}}_{\pi N}(t)}{t - m^2_{\pi}} \left(rac{m^2_{\pi}}{t}
ight)^2$$

• The chiral expansion formula for M_N can now be written in terms of the subtracted dispersion relation:

$$\begin{split} M_{N} = & \stackrel{\circ}{M}_{N} + c_{2}m_{\pi}^{2} - \frac{1}{\pi}\int_{-\infty}^{0} \mathrm{d}t \frac{\mathrm{Im}\ M_{N}(t)}{t - m_{\pi}^{2}} \left(\frac{m_{\pi}^{2}}{t}\right)^{2} \\ = & \stackrel{\circ}{M}_{N} + c_{2}m_{\pi}^{2} + \tilde{\Sigma}_{\pi N}^{\mathrm{HB}}(m_{\pi}^{2}). \end{split}$$

• In general, we write the dispersion relation for n subtractions as:

$$f(m_{\pi}^2) = -rac{1}{\pi} \int_{-\infty}^0 \mathrm{d}t rac{\mathrm{Im}\,f(t)}{t-m_{\pi}^2} \left(rac{m_{\pi}^2}{t}
ight)^n$$

• The chiral expansion formula for M_N can now be written in terms of the subtracted dispersion relation:

$$M_{N} = \stackrel{\circ}{M}_{N} + c_{2}m_{\pi}^{2} - \frac{1}{\pi} \int_{-\infty}^{0} dt \frac{\mathrm{Im} M_{N}(t)}{t - m_{\pi}^{2}} \left(\frac{m_{\pi}^{2}}{t}\right)^{2}$$
$$= \stackrel{\circ}{M}_{N} + c_{2}m_{\pi}^{2} + \tilde{\Sigma}_{\pi N}^{\mathrm{HB}}(m_{\pi}^{2}).$$

• In general, we write the dispersion relation for n subtractions as:

$$f(m_\pi^2) = -rac{1}{\pi} \int_{-\infty}^0 \mathrm{d}t rac{\mathrm{Im}\,f(t)}{t-m_\pi^2} \left(rac{m_\pi^2}{t}
ight)^n$$

• The chiral expansion formula for *M_N* can now be written in terms of the subtracted dispersion relation:

$$M_{N} = \stackrel{\circ}{M}_{N} + c_{2}m_{\pi}^{2} - \frac{1}{\pi}\int_{-\infty}^{0} \mathrm{d}t \frac{\mathrm{Im} M_{N}(t)}{t - m_{\pi}^{2}} \left(\frac{m_{\pi}^{2}}{t}\right)^{2}$$
$$= \stackrel{\circ}{M}_{N} + c_{2}m_{\pi}^{2} + \tilde{\Sigma}_{\pi N}^{\mathrm{HB}}(m_{\pi}^{2}).$$

• In general, we write the dispersion relation for *n* subtractions as:

$$f(m_\pi^2) = -rac{1}{\pi} \int_{-\infty}^0 \mathrm{d}t rac{\mathrm{Im}\,f(t)}{t-m_\pi^2} \left(rac{m_\pi^2}{t}
ight)^n$$

• The chiral expansion formula for *M_N* can now be written in terms of the subtracted dispersion relation:

$$M_{N} = \stackrel{\circ}{M}_{N} + c_{2}m_{\pi}^{2} - \frac{1}{\pi} \int_{-\infty}^{0} dt \frac{\mathrm{Im} M_{N}(t)}{t - m_{\pi}^{2}} \left(\frac{m_{\pi}^{2}}{t}\right)^{2}$$
$$= \stackrel{\circ}{M}_{N} + c_{2}m_{\pi}^{2} + \tilde{\Sigma}_{\pi N}^{\mathrm{HB}}(m_{\pi}^{2}).$$

• In general, we write the dispersion relation for *n* subtractions as:

$$f(m_{\pi}^2) = -\frac{1}{\pi} \int_{-\infty}^{0} \mathrm{d}t \frac{\mathrm{Im} f(t)}{t - m_{\pi}^2} \left(\frac{m_{\pi}^2}{t}\right)^n$$

.

An improved chiral expansion using a pion-mass dispersion relation

- Finite-range regularization (FRR) has some useful properties:
 - It is suitable for composite particles, where degrees of freedom at higher energy scales exist (quarks/gluons).
 - It can be used to determine the power-counting regime (PCR) of χPT, where the chiral expansion is convergent [hep-lat/0501028].
 - It can be used to improve the heavy-baryon expansion by resumming the chiral series so the higher-order terms are small [hep-lat/0302020].
 - It allows a calculation to be performed outside the PCR (at the expense of model-independence, albeit quantifiably) [hep-lat/1002.4924].
- We would like to incorporate these properties into our dispersion relation, without compromising any symmetries.

- Finite-range regularization (FRR) has some useful properties:
 - It is suitable for composite particles, where degrees of freedom at higher energy scales exist (quarks/gluons).
 - It can be used to determine the power-counting regime (PCR) of χPT, where the chiral expansion is convergent [hep-lat/0501028].
 - It can be used to improve the heavy-baryon expansion by resumming the chiral series so the higher-order terms are small [hep-lat/0302020].
 - It allows a calculation to be performed outside the PCR (at the expense of model-independence, albeit quantifiably) [hep-lat/1002.4924].
- We would like to incorporate these properties into our dispersion relation, without compromising any symmetries.

- Finite-range regularization (FRR) has some useful properties:
 - It is suitable for composite particles, where degrees of freedom at higher energy scales exist (quarks/gluons).

 - It can be used to improve the heavy-baryon expansion by resumming the chiral series so the higher-order terms are small [hep-lat/0302020].
 - It allows a calculation to be performed outside the PCR (at the expense of model-independence, albeit quantifiably) [hep-lat/1002.4924].
- We would like to incorporate these properties into our dispersion relation, without compromising any symmetries.

- Finite-range regularization (FRR) has some useful properties:
 - It is suitable for composite particles, where degrees of freedom at higher energy scales exist (quarks/gluons).

 - It can be used to improve the heavy-baryon expansion by resumming the chiral series so the higher-order terms are small [hep-lat/0302020].
 - It allows a calculation to be performed outside the PCR (at the expense of model-independence, albeit quantifiably) [hep-lat/1002.4924].
- We would like to incorporate these properties into our dispersion relation, without compromising any symmetries.

- Finite-range regularization (FRR) has some useful properties:
 - It is suitable for composite particles, where degrees of freedom at higher energy scales exist (quarks/gluons).

 - It can be used to improve the heavy-baryon expansion by resumming the chiral series so the higher-order terms are small [hep-lat/0302020].
 - It allows a calculation to be performed outside the PCR (at the expense of model-independence, albeit quantifiably) [hep-lat/1002.4924].
- We would like to incorporate these properties into our dispersion relation, without compromising any symmetries.

- Finite-range regularization (FRR) has some useful properties:
 - It is suitable for composite particles, where degrees of freedom at higher energy scales exist (quarks/gluons).

 - It can be used to improve the heavy-baryon expansion by resumming the chiral series so the higher-order terms are small [hep-lat/0302020].
 - It allows a calculation to be performed outside the PCR (at the expense of model-independence, albeit quantifiably) [hep-lat/1002.4924].
- We would like to incorporate these properties into our dispersion relation, without compromising any symmetries.

- Recall: chiral formulae are not convergent series expansions in general, but are asymptotic expansions in m_{π}/Λ_{χ} , ($\Lambda_{\chi} \simeq 4\pi f_{\pi} \sim 1$ GeV).
- Consider the dispersion relation integral split into two parts:

$$f(m_\pi^2) = -rac{1}{\pi} \left(\int_{-\Lambda^2}^0 \mathrm{d}t + \int_{-\infty}^{-\Lambda^2} \mathrm{d}t
ight) rac{\mathrm{Im}\, f(t)}{t - m_\pi^2}, \quad \Lambda \sim \Lambda_\chi.$$

- The first integral contains the chiral nonanalytic terms, but has been cut off at the scale: $-\Lambda^2$.
- The second integral can be expanded in integer powers of m_{π}^2/Λ^2 , thus contributing analytic terms.
- Any physics above the scale Λ_{χ} is not described by χ PT, and thus should be absorbable into the low-energy coefficients ($\mathring{M}_N, c_2, ...$).

- Recall: chiral formulae are not convergent series expansions in general, but are asymptotic expansions in m_{π}/Λ_{χ} , ($\Lambda_{\chi} \simeq 4\pi f_{\pi} \sim 1$ GeV).
- Consider the dispersion relation integral split into two parts:

$$f(m_\pi^2) = -rac{1}{\pi} \left(\int_{-\Lambda^2}^0 \mathrm{d}t + \int_{-\infty}^{-\Lambda^2} \mathrm{d}t
ight) rac{\mathrm{Im}\, f(t)}{t - m_\pi^2}, \quad \Lambda \sim \Lambda_\chi.$$

- The first integral contains the chiral nonanalytic terms, but has been cut off at the scale: $-\Lambda^2$.
- The second integral can be expanded in integer powers of m_{π}^2/Λ^2 , thus contributing analytic terms.
- Any physics above the scale Λ_{χ} is not described by χ PT, and thus should be absorbable into the low-energy coefficients ($\mathring{M}_N, c_2, ...$).

- Recall: chiral formulae are not convergent series expansions in general, but are asymptotic expansions in m_{π}/Λ_{χ} , ($\Lambda_{\chi} \simeq 4\pi f_{\pi} \sim 1$ GeV).
- Consider the dispersion relation integral split into two parts:

$$f(m_{\pi}^2) = -\frac{1}{\pi} \left(\int_{-\Lambda^2}^{0} \mathrm{d}t + \int_{-\infty}^{-\Lambda^2} \mathrm{d}t \right) \frac{\mathrm{Im} f(t)}{t - m_{\pi}^2}, \quad \Lambda \sim \Lambda_{\chi}.$$

- The first integral contains the chiral nonanalytic terms, but has been cut off at the scale: $-\Lambda^2$.
- The second integral can be expanded in integer powers of m_{π}^2/Λ^2 , thus contributing analytic terms.
- Any physics above the scale Λ_{χ} is not described by χ PT, and thus should be absorbable into the low-energy coefficients ($\mathring{M}_N, c_2, ...$).

- Recall: chiral formulae are not convergent series expansions in general, but are asymptotic expansions in m_{π}/Λ_{χ} , ($\Lambda_{\chi} \simeq 4\pi f_{\pi} \sim 1$ GeV).
- Consider the dispersion relation integral split into two parts:

$$f(m_{\pi}^2) = -\frac{1}{\pi} \left(\int_{-\Lambda^2}^{0} \mathrm{d}t + \int_{-\infty}^{-\Lambda^2} \mathrm{d}t \right) \frac{\mathrm{Im} f(t)}{t - m_{\pi}^2}, \quad \Lambda \sim \Lambda_{\chi}.$$

- The first integral contains the chiral nonanalytic terms, but has been cut off at the scale: $-\Lambda^2$.
- The second integral can be expanded in integer powers of m_{π}^2/Λ^2 , thus contributing analytic terms.
- Any physics above the scale Λ_{χ} is not described by χ PT, and thus should be absorbable into the low-energy coefficients ($\mathring{M}_N, c_2, ...$).

- Recall: chiral formulae are not convergent series expansions in general, but are asymptotic expansions in m_{π}/Λ_{χ} , ($\Lambda_{\chi} \simeq 4\pi f_{\pi} \sim 1$ GeV).
- Consider the dispersion relation integral split into two parts:

$$f(m_{\pi}^2) = -\frac{1}{\pi} \left(\int_{-\Lambda^2}^{0} \mathrm{d}t + \int_{-\infty}^{-\Lambda^2} \mathrm{d}t \right) \frac{\mathrm{Im} f(t)}{t - m_{\pi}^2}, \quad \Lambda \sim \Lambda_{\chi}.$$

- The first integral contains the chiral nonanalytic terms, but has been cut off at the scale: $-\Lambda^2$.
- The second integral can be expanded in integer powers of m_{π}^2/Λ^2 , thus contributing analytic terms.
- Any physics above the scale Λ_{χ} is not described by χ PT, and thus should be absorbable into the low-energy coefficients (\mathring{M}_N , c_2 ,...).

- Recall: chiral formulae are not convergent series expansions in general, but are asymptotic expansions in m_{π}/Λ_{χ} , ($\Lambda_{\chi} \simeq 4\pi f_{\pi} \sim 1$ GeV).
- Consider the dispersion relation integral split into two parts:

$$f(m_{\pi}^2) = -\frac{1}{\pi} \left(\int_{-\Lambda^2}^{0} \mathrm{d}t + \int_{-\infty}^{-\Lambda^2} \mathrm{d}t \right) \frac{\mathrm{Im} f(t)}{t - m_{\pi}^2}, \quad \Lambda \sim \Lambda_{\chi}.$$

- The first integral contains the chiral nonanalytic terms, but has been cut off at the scale: $-\Lambda^2$.
- The second integral can be expanded in integer powers of m_{π}^2/Λ^2 , thus contributing analytic terms.
- Any physics above the scale Λ_{χ} is not described by χPT , and thus should be absorbable into the low-energy coefficients $(\stackrel{\circ}{M}_N, c_2, ...)$.

- The second integral generates an infinite series of terms, but they are analytic, and therefore absorbable (in principle) into the low-energy coefficients.
- Since we are working to chiral order m_{π}^3 , we only have a finite number of low-energy coefficients. But the terms from the second integral should be comparable to other higher-order terms neglected.
- Therefore, we can drop the second integral, and have:

$$f(m_\pi^2) = -rac{1}{\pi} \int_{-\Lambda^2}^0 \mathrm{d}t rac{\mathrm{Im}\,f(t)}{t-m_\pi^2}.$$

- The second integral generates an infinite series of terms, but they are analytic, and therefore absorbable (in principle) into the low-energy coefficients.
- Since we are working to chiral order m_{π}^3 , we only have a finite number of low-energy coefficients. But the terms from the second integral should be comparable to other higher-order terms neglected.
- Therefore, we can drop the second integral, and have:

$$f(m_\pi^2) = -rac{1}{\pi} \int_{-\Lambda^2}^0 \mathrm{d}t rac{\mathrm{Im}\,f(t)}{t-m_\pi^2}.$$

- The second integral generates an infinite series of terms, but they are analytic, and therefore absorbable (in principle) into the low-energy coefficients.
- Since we are working to chiral order m_{π}^3 , we only have a finite number of low-energy coefficients. But the terms from the second integral should be comparable to other higher-order terms neglected.
- Therefore, we can drop the second integral, and have:

$$f(m_\pi^2) = -rac{1}{\pi} \int_{-\Lambda^2}^0 \mathrm{d}t rac{\mathrm{Im}\,f(t)}{t-m_\pi^2}.$$

- The second integral generates an infinite series of terms, but they are analytic, and therefore absorbable (in principle) into the low-energy coefficients.
- Since we are working to chiral order m_{π}^3 , we only have a finite number of low-energy coefficients. But the terms from the second integral should be comparable to other higher-order terms neglected.
- Therefore, we can drop the second integral, and have:

$$f(m_{\pi}^2) = -\frac{1}{\pi} \int_{-\Lambda^2}^{0} \mathrm{d}t \frac{\mathrm{Im} f(t)}{t - m_{\pi}^2}.$$

- The second integral generates an infinite series of terms, but they are analytic, and therefore absorbable (in principle) into the low-energy coefficients.
- Since we are working to chiral order m_{π}^3 , we only have a finite number of low-energy coefficients. But the terms from the second integral should be comparable to other higher-order terms neglected.
- Therefore, we can drop the second integral, and have:

$$f(m_{\pi}^2) = -\frac{1}{\pi} \int_{-\Lambda^2}^{0} \mathrm{d}t \frac{\mathrm{Im} f(t)}{t - m_{\pi}^2}.$$

- We would like to use this FRR dispersion relation to compare results from heavy-baryon and non-heavy-baryon chiral perturbation theory (HB χ PT vs. B χ PT).
- By imposing the cutoff, $\Lambda \sim 1$ GeV, we can investigate the convergence properties of the chiral expansion in m_{π}^2 , without computing the higher order terms (often done in the FRR literature).
- If there is a significant deviation between HB χ PT and B χ PT for $\Lambda \ll 1$ GeV, (at chiral finite order), the two expansions cannot be reconciled in a 'natural' way- i.e. higher-order terms must become unnaturally large in order to reconcile them.
- We shall examine the situation for several specific examples: the nucleon mass, anomalous magnetic moment, and the proton magnetic polarizability; and for each one obtain a different picture

- We would like to use this FRR dispersion relation to compare results from heavy-baryon and non-heavy-baryon chiral perturbation theory (HB χ PT vs. B χ PT).
- By imposing the cutoff, $\Lambda \sim 1$ GeV, we can investigate the convergence properties of the chiral expansion in m_{π}^2 , without computing the higher order terms (often done in the FRR literature).
- If there is a significant deviation between HB χ PT and B χ PT for $\Lambda \ll 1$ GeV, (at chiral finite order), the two expansions cannot be reconciled in a 'natural' way- i.e. higher-order terms must become unnaturally large in order to reconcile them.
- We shall examine the situation for several specific examples: the nucleon mass, anomalous magnetic moment, and the proton magnetic polarizability; and for each one obtain a different picture

- We would like to use this FRR dispersion relation to compare results from heavy-baryon and non-heavy-baryon chiral perturbation theory (HB χ PT vs. B χ PT).
- By imposing the cutoff, $\Lambda \sim 1$ GeV, we can investigate the convergence properties of the chiral expansion in m_{π}^2 , without computing the higher order terms (often done in the FRR literature).
- If there is a significant deviation between HB χ PT and B χ PT for $\Lambda \ll 1$ GeV, (at chiral finite order), the two expansions cannot be reconciled in a 'natural' way- i.e. higher-order terms must become unnaturally large in order to reconcile them.
- We shall examine the situation for several specific examples: the nucleon mass, anomalous magnetic moment, and the proton magnetic polarizability; and for each one obtain a different picture

- We would like to use this FRR dispersion relation to compare results from heavy-baryon and non-heavy-baryon chiral perturbation theory (HB χ PT vs. B χ PT).
- By imposing the cutoff, $\Lambda \sim 1$ GeV, we can investigate the convergence properties of the chiral expansion in m_{π}^2 , without computing the higher order terms (often done in the FRR literature).
- If there is a significant deviation between HB χ PT and B χ PT for $\Lambda \ll 1$ GeV, (at chiral finite order), the two expansions cannot be reconciled in a 'natural' way- i.e. higher-order terms must become unnaturally large in order to reconcile them.
- We shall examine the situation for several specific examples: the nucleon mass, anomalous magnetic moment, and the proton magnetic polarizability; and for each one obtain a different picture.

Baryon chiral perturbation theory

An improved chiral expansion using a pion-mass dispersion relation

Properties at $\mathcal{O}(m_{\pi}^3)$: nucleon mass

• Recall the chiral expansion formula for the nucleon mass M_N :

$$M_N^{\rm FRR} = \stackrel{\circ}{M}_N + c_2 m_\pi^2 - \frac{1}{\pi} \int_{-\Lambda^2}^0 dt \frac{{
m Im} M_N(t)}{t - m_\pi^2} \left(\frac{m_\pi^2}{t}\right)^2 .$$

• In HB χ PT, we had:

$$\operatorname{Im} M_N(t) \stackrel{\mathrm{HB}}{=} \operatorname{Im} \{ \chi t^{3/2} \} = \chi t \sqrt{-t} \, \theta(-t).$$

• In B_{χ}PT, one obtains the following formula from the covariant integral result (for physical nucleon mass scale $\hat{M}_N \simeq 939$ MeV):

$$\operatorname{Im} M_{N}(t) \stackrel{\mathrm{B}}{=} -\chi t \left(\frac{1}{2} \frac{t}{\hat{M}_{N}} + \sqrt{\frac{1}{4} \frac{t^{2}}{\hat{M}_{N}^{2}} - t} \right) \theta(-t).$$

Properties at $\mathcal{O}(m_{\pi}^3)$: nucleon mass

• Recall the chiral expansion formula for the nucleon mass M_N :

$$M_N^{\rm FRR} = \stackrel{\circ}{M}_N + c_2 m_\pi^2 - rac{1}{\pi} \int_{-\Lambda^2}^0 {
m d}t rac{{
m Im} \ M_N(t)}{t - m_\pi^2} \left(rac{m_\pi^2}{t}
ight)^2 .$$

• In HB χ PT, we had:

$$\operatorname{Im} M_{\mathcal{N}}(t) \stackrel{\operatorname{HB}}{=} \operatorname{Im} \left\{ \chi t^{3/2} \right\} = \chi t \sqrt{-t} \, \theta(-t).$$

• In B_{χ}PT, one obtains the following formula from the covariant integral result (for physical nucleon mass scale $\hat{M}_N \simeq 939$ MeV):

$$\operatorname{Im} M_{N}(t) \stackrel{\mathrm{B}}{=} -\chi t \left(\frac{1}{2} \frac{t}{\hat{M}_{N}} + \sqrt{\frac{1}{4} \frac{t^{2}}{\hat{M}_{N}^{2}} - t} \right) \theta(-t).$$

Properties at $\mathcal{O}(m_{\pi}^3)$: nucleon mass

• Recall the chiral expansion formula for the nucleon mass M_N :

$$M_N^{\rm FRR} = \stackrel{\circ}{M}_N + c_2 m_\pi^2 - rac{1}{\pi} \int_{-\Lambda^2}^0 {
m d}t rac{{
m Im} \ M_N(t)}{t - m_\pi^2} \left(rac{m_\pi^2}{t}
ight)^2 .$$

• In HB χ PT, we had:

$$\operatorname{Im} M_{N}(t) \stackrel{\operatorname{HB}}{=} \operatorname{Im} \{ \chi t^{3/2} \} = \chi t \sqrt{-t} \, \theta(-t).$$

• In B_{χ}PT, one obtains the following formula from the covariant integral result (for physical nucleon mass scale $\hat{M}_N \simeq 939$ MeV):

$$\operatorname{Im} M_{N}(t) \stackrel{\mathrm{B}}{=} -\chi t \left(\frac{1}{2} \frac{t}{\hat{M}_{N}} + \sqrt{\frac{1}{4} \frac{t^{2}}{\hat{M}_{N}^{2}} - t} \right) \theta(-t).$$

• Recall the chiral expansion formula for the nucleon mass M_N :

$$M_N^{\rm FRR} = \stackrel{\circ}{M}_N + c_2 m_\pi^2 - rac{1}{\pi} \int_{-\Lambda^2}^0 {
m d}t rac{{
m Im} \ M_N(t)}{t - m_\pi^2} \left(rac{m_\pi^2}{t}
ight)^2 .$$

• In HB χ PT, we had:

$$\operatorname{Im} M_{N}(t) \stackrel{\operatorname{HB}}{=} \operatorname{Im} \{ \chi t^{3/2} \} = \chi t \sqrt{-t} \theta(-t).$$

• In B_{χ}PT, one obtains the following formula from the covariant integral result (for physical nucleon mass scale $\hat{M}_N \simeq 939$ MeV):

$$\operatorname{Im} M_{N}(t) \stackrel{\mathrm{B}}{=} -\chi t \left(\frac{1}{2} \frac{t}{\hat{M}_{N}} + \sqrt{\frac{1}{4} \frac{t^{2}}{\hat{M}_{N}^{2}} - t} \right) \theta(-t).$$

• Recall the chiral expansion formula for the nucleon mass M_N :

$$M_N^{\rm FRR} = \stackrel{\circ}{M}_N + c_2 m_\pi^2 - rac{1}{\pi} \int_{-\Lambda^2}^0 {
m d}t rac{{
m Im} \ M_N(t)}{t - m_\pi^2} \left(rac{m_\pi^2}{t}
ight)^2 .$$

• In HB χ PT, we had:

$$\operatorname{Im} M_N(t) \stackrel{\operatorname{HB}}{=} \operatorname{Im} \{\chi t^{3/2}\} = \chi t \sqrt{-t} \theta(-t).$$

• In B χ PT, one obtains the following formula from the covariant integral result (for physical nucleon mass scale $\hat{M}_N \simeq 939$ MeV):

$$\operatorname{Im} M_{N}(t) \stackrel{\mathrm{B}}{=} -\chi t \left(\frac{1}{2} \frac{t}{\hat{M}_{N}} + \sqrt{\frac{1}{4} \frac{t^{2}}{\hat{M}_{N}^{2}}} - t \right) \theta(-t).$$

• Recall the chiral expansion formula for the nucleon mass M_N :

$$M_N^{\rm FRR} = \stackrel{\circ}{M}_N + c_2 m_\pi^2 - rac{1}{\pi} \int_{-\Lambda^2}^0 {
m d}t rac{{
m Im} \ M_N(t)}{t - m_\pi^2} \left(rac{m_\pi^2}{t}
ight)^2 .$$

• In HB χ PT, we had:

$$\operatorname{Im} M_{N}(t) \stackrel{\operatorname{HB}}{=} \operatorname{Im} \{\chi t^{3/2}\} = \chi t \sqrt{-t} \theta(-t).$$

• In B χ PT, one obtains the following formula from the covariant integral result (for physical nucleon mass scale $\hat{M}_N \simeq 939$ MeV):

$$\operatorname{Im} M_{N}(t) \stackrel{\mathrm{B}}{=} -\chi t \left(\frac{1}{2} \frac{t}{\hat{M}_{N}} + \sqrt{\frac{1}{4} \frac{t^{2}}{\hat{M}_{N}^{2}} - t} \right) \theta(-t).$$

• By computing the FRR dispersion relation, the following chiral expansions are be obtained:

$$M_{N}^{\text{FRR } \stackrel{\text{HB}}{=} \stackrel{\circ}{M}_{N} + c_{2}m_{\pi}^{2} + \chi \frac{2}{\pi} \left\{ m_{\pi}^{3} \arctan \frac{\Lambda}{m_{\pi}} - \frac{\Lambda^{3}}{3} - \Lambda m_{\pi}^{2} \right\}.$$
$$M_{N}^{\text{FRR } \stackrel{\text{B}}{=} \stackrel{\circ}{M}_{N} + c_{2}m_{\pi}^{2} + \frac{\chi m_{\pi}^{4}}{2\pi \hat{M}_{N}} \left\{ 2\sqrt{\frac{4\hat{M}_{N}^{2}}{m_{\pi}^{2}} - 1} \arctan \left(\frac{\Lambda}{m_{\pi}} \sqrt{\frac{4\hat{M}_{N}^{2} - m_{\pi}^{2}}{4\hat{M}_{N}^{2} + \Lambda^{2}}} \right) + 2 \operatorname{arcsinh} \frac{\Lambda}{2\hat{M}_{N}} + \log \frac{m_{\pi}^{2}}{m_{\pi}^{2} + \Lambda^{2}} \right\}.$$

• By computing the FRR dispersion relation, the following chiral expansions are be obtained:

$$M_{N}^{\text{FRR}} \stackrel{\text{HB}}{=} \stackrel{\circ}{M}_{N} + c_{2}m_{\pi}^{2} + \chi \frac{2}{\pi} \left\{ m_{\pi}^{3} \arctan \frac{\Lambda}{m_{\pi}} - \frac{\Lambda^{3}}{3} - \Lambda m_{\pi}^{2} \right\}.$$

$$\begin{split} \mathcal{M}_{N}^{\mathrm{FRR}} &\stackrel{\mathrm{B}}{=} \stackrel{\circ}{\mathcal{M}}_{N} + c_{2} m_{\pi}^{2} + \frac{\chi m_{\pi}^{4}}{2\pi \hat{\mathcal{M}}_{N}} \Biggl\{ 2 \sqrt{\frac{4 \hat{\mathcal{M}}_{N}^{2}}{m_{\pi}^{2}} - 1} \arctan\left(\frac{\Lambda}{m_{\pi}} \sqrt{\frac{4 \hat{\mathcal{M}}_{N}^{2} - m_{\pi}^{2}}{4 \hat{\mathcal{M}}_{N}^{2} + \Lambda^{2}}}\right) \\ &+ 2 \operatorname{arcsinh} \frac{\Lambda}{2 \hat{\mathcal{M}}_{N}} + \log \frac{m_{\pi}^{2}}{m_{\pi}^{2} + \Lambda^{2}} \Biggr\}. \end{split}$$

An improved chiral expansion using a pion-mass dispersion relation

• By computing the FRR dispersion relation, the following chiral expansions are be obtained:

$$M_N^{\text{FRR}} \stackrel{\text{HB}}{=} \stackrel{\circ}{M}_N + c_2 m_\pi^2 + \chi \frac{2}{\pi} \left\{ m_\pi^3 \arctan \frac{\Lambda}{m_\pi} - \frac{\Lambda^3}{3} - \Lambda m_\pi^2 \right\}.$$

$$\begin{split} \mathcal{M}_{\mathcal{N}}^{\text{FRR}} &\stackrel{\text{B}}{=} \stackrel{\circ}{\mathcal{M}}_{\mathcal{N}} + c_2 m_{\pi}^2 + \frac{\chi m_{\pi}^4}{2\pi \hat{\mathcal{M}}_{\mathcal{N}}} \Biggl\{ 2\sqrt{\frac{4\hat{\mathcal{M}}_{\mathcal{N}}^2}{m_{\pi}^2} - 1} \arctan\left(\frac{\Lambda}{m_{\pi}}\sqrt{\frac{4\hat{\mathcal{M}}_{\mathcal{N}}^2 - m_{\pi}^2}{4\hat{\mathcal{M}}_{\mathcal{N}}^2 + \Lambda^2}}\right) \\ &+ 2 \operatorname{arcsinh} \frac{\Lambda}{2\hat{\mathcal{M}}_{\mathcal{N}}} + \log \frac{m_{\pi}^2}{m_{\pi}^2 + \Lambda^2} \Biggr\}. \end{split}$$

Figure: The Λ -dependence of leading-order loop contributions to the nucleon mass, $M_N^{(3)} \equiv \tilde{\Sigma}_{\pi N}$, calculated in HB χ PT (blue dashed curves) and B χ PT (red solid curves) at $m_{\pi}^2 = m_{\pi, phys}^2$.

An improved chiral expansion using a pion-mass dispersion relation

- The HB χ PT formula can be obtained from the B χ PT by taking the heavy-baryon limit: $\hat{M}_N \rightarrow \infty$.
- We will find that, for all our examples of *f*, the HBχPT formulae contain the term:

$$\tilde{\Sigma}_{f}^{\mathrm{HB}}(m_{\pi}^{2};\Lambda) = -2\chi m_{\pi}^{2n-1} \arctan \frac{\Lambda}{m_{\pi}}.$$

- *n* (the number of subtractions) specifies the leading nonanalytic term (in m_{π}^2).
- The power index *n* will help us classify the 'naturalness' of the heavy-baryon expansion.

- The HB χ PT formula can be obtained from the B χ PT by taking the heavy-baryon limit: $\hat{M}_N \rightarrow \infty$.
- We will find that, for all our examples of *f*, the HBχPT formulae contain the term:

$$ilde{\Sigma}_{f}^{\mathrm{HB}}(m_{\pi}^{2};\Lambda) = -2\chi m_{\pi}^{2n-1} \arctan rac{\Lambda}{m_{\pi}}.$$

- *n* (the number of subtractions) specifies the leading nonanalytic term (in m_{π}^2).
- The power index *n* will help us classify the 'naturalness' of the heavy-baryon expansion.

- The HB χ PT formula can be obtained from the B χ PT by taking the heavy-baryon limit: $\hat{M}_N \rightarrow \infty$.
- We will find that, for all our examples of *f*, the HBχPT formulae contain the term:

$$\tilde{\Sigma}_{f}^{\mathrm{HB}}(m_{\pi}^{2};\Lambda) = -2\chi m_{\pi}^{2n-1} \arctan \frac{\Lambda}{m_{\pi}}.$$

- *n* (the number of subtractions) specifies the leading nonanalytic term (in m_{π}^2).
- The power index *n* will help us classify the 'naturalness' of the heavy-baryon expansion.

- The HB χ PT formula can be obtained from the B χ PT by taking the heavy-baryon limit: $\hat{M}_N \rightarrow \infty$.
- We will find that, for all our examples of *f*, the HBχPT formulae contain the term:

$$ilde{\Sigma}_{f}^{\mathrm{HB}}(m_{\pi}^{2};\Lambda) = -2\chi m_{\pi}^{2n-1} \arctan rac{\Lambda}{m_{\pi}}.$$

- *n* (the number of subtractions) specifies the leading nonanalytic term (in m_{π}^2).
- The power index *n* will help us classify the 'naturalness' of the heavy-baryon expansion.

- The HB χ PT formula can be obtained from the B χ PT by taking the heavy-baryon limit: $\hat{M}_N \rightarrow \infty$.
- We will find that, for all our examples of *f*, the HBχPT formulae contain the term:

$$ilde{\Sigma}_{f}^{\mathrm{HB}}(m_{\pi}^{2};\Lambda) = -2\chi m_{\pi}^{2n-1} \arctan rac{\Lambda}{m_{\pi}}.$$

- *n* (the number of subtractions) specifies the leading nonanalytic term (in m_{π}^2).
- The power index *n* will help us classify the 'naturalness' of the heavy-baryon expansion.

- A similar treatment follows for the anomalous magnetic moment (AMM), κ , of the proton and neutron.
- The finite-size behaviour of a hadron (pion-cloud corrections) leads to an anomalous component, κ, to its magnetic moment (in addition to its Dirac moment).
- The leading-order contribution to the AMM is a 1-pion loop with minimal insertion of one photon.
- The imaginary parts of the AMMs in HB χ PT are:

$$\operatorname{Im} \kappa_{p}(t) \stackrel{\mathrm{HB}}{=} -\frac{4}{3} \chi \hat{M}_{N} \sqrt{-t} \, \theta(-t) = -\operatorname{Im} \kappa_{n}(t).$$

- A similar treatment follows for the anomalous magnetic moment (AMM), κ , of the proton and neutron.
- The finite-size behaviour of a hadron (pion-cloud corrections) leads to an anomalous component, κ, to its magnetic moment (in addition to its Dirac moment).
- The leading-order contribution to the AMM is a 1-pion loop with minimal insertion of one photon.
- The imaginary parts of the AMMs in HB χ PT are:

$$\operatorname{Im} \kappa_{p}(t) \stackrel{\mathrm{HB}}{=} -\frac{4}{3} \chi \hat{M}_{N} \sqrt{-t} \, \theta(-t) = -\operatorname{Im} \kappa_{n}(t).$$

- A similar treatment follows for the anomalous magnetic moment (AMM), κ , of the proton and neutron.
- The finite-size behaviour of a hadron (pion-cloud corrections) leads to an anomalous component, κ, to its magnetic moment (in addition to its Dirac moment).
- The leading-order contribution to the AMM is a 1-pion loop with minimal insertion of one photon.
- The imaginary parts of the AMMs in HB χ PT are:

$$\operatorname{Im} \kappa_{p}(t) \stackrel{\mathrm{HB}}{=} -\frac{4}{3} \chi \hat{M}_{N} \sqrt{-t} \, \theta(-t) = -\operatorname{Im} \kappa_{n}(t).$$

- A similar treatment follows for the anomalous magnetic moment (AMM), κ , of the proton and neutron.
- The finite-size behaviour of a hadron (pion-cloud corrections) leads to an anomalous component, κ , to its magnetic moment (in addition to its Dirac moment).
- The leading-order contribution to the AMM is a 1-pion loop with minimal insertion of one photon.
- The imaginary parts of the AMMs in HB χ PT are:

$$\operatorname{Im} \kappa_{\rho}(t) \stackrel{\operatorname{HB}}{=} -\frac{4}{3} \chi \hat{M}_{N} \sqrt{-t} \, \theta(-t) = -\operatorname{Im} \kappa_{n}(t).$$

- A similar treatment follows for the anomalous magnetic moment (AMM), κ , of the proton and neutron.
- The finite-size behaviour of a hadron (pion-cloud corrections) leads to an anomalous component, κ, to its magnetic moment (in addition to its Dirac moment).
- The leading-order contribution to the AMM is a 1-pion loop with minimal insertion of one photon.
- The imaginary parts of the AMMs in HB χ PT are:

$$\operatorname{Im} \kappa_{p}(t) \stackrel{\mathrm{HB}}{=} -\frac{4}{3} \chi \hat{M}_{N} \sqrt{-t} \,\theta(-t) = -\operatorname{Im} \kappa_{n}(t).$$

- A similar treatment follows for the anomalous magnetic moment (AMM), κ , of the proton and neutron.
- The finite-size behaviour of a hadron (pion-cloud corrections) leads to an anomalous component, κ , to its magnetic moment (in addition to its Dirac moment).
- The leading-order contribution to the AMM is a 1-pion loop with minimal insertion of one photon.
- The imaginary parts of the AMMs in HB χ PT are:

$$\operatorname{Im} \kappa_{p}(t) \stackrel{\mathrm{HB}}{=} -\frac{4}{3} \chi \hat{M}_{N} \sqrt{-t} \,\theta(-t) = -\operatorname{Im} \kappa_{n}(t).$$

$$\kappa_{p,n}^{\rm FRR} = \overset{\circ}{\kappa}_{p,n} - \frac{1}{\pi} \int_{-\Lambda^2}^{0} \mathrm{d}t \frac{\mathrm{Im}\,\kappa_{p,n}(t)}{t - m_{\pi}^2} \left(\frac{m_{\pi}^2}{t}\right)^1.$$

- In lattice QCD, the isovector nucleon (p n) is used, so that calculations involving all-to-all propagators cancel.
- The isovector nucleon AMM formula may also include a term linear in m_{π}^2 if desired (for fitting):

$$\kappa_{\rm isov}(m_{\pi}^2;\Lambda^2) = \kappa_p(m_{\pi}^2;\Lambda^2) - \kappa_n(m_{\pi}^2;\Lambda^2) + a_2 m_{\pi}^2.$$

• Chiral formulae corresponding to HB χ PT and B χ PT may again be obtained by evaluating the dispersion relation:

$$\kappa_{p,n}^{\text{FRR}} = \overset{\circ}{\kappa}_{p,n} - \frac{1}{\pi} \int_{-\Lambda^2}^{0} \mathrm{d}t \frac{\text{Im}\,\kappa_{p,n}(t)}{t - m_{\pi}^2} \left(\frac{m_{\pi}^2}{t}\right)^1$$

- In lattice QCD, the isovector nucleon (p n) is used, so that calculations involving all-to-all propagators cancel.
- The isovector nucleon AMM formula may also include a term linear in m_{π}^2 if desired (for fitting):

$$\kappa_{\rm isov}(m_{\pi}^2;\Lambda^2) = \kappa_p(m_{\pi}^2;\Lambda^2) - \kappa_n(m_{\pi}^2;\Lambda^2) + a_2 m_{\pi}^2.$$

$$\kappa_{p,n}^{\text{FRR}} = \overset{\circ}{\kappa}_{p,n} - \frac{1}{\pi} \int_{-\Lambda^2}^{0} dt \frac{\text{Im}\,\kappa_{p,n}(t)}{t - m_{\pi}^2} \left(\frac{m_{\pi}^2}{t}\right)^1$$

- In lattice QCD, the isovector nucleon (p n) is used, so that calculations involving all-to-all propagators cancel.
- The isovector nucleon AMM formula may also include a term linear in m_{π}^2 if desired (for fitting):

$$\kappa_{\rm isov}(m_{\pi}^2;\Lambda^2) = \kappa_p(m_{\pi}^2;\Lambda^2) - \kappa_n(m_{\pi}^2;\Lambda^2) + a_2 m_{\pi}^2$$

$$\kappa_{p,n}^{\text{FRR}} = \overset{\circ}{\kappa}_{p,n} - \frac{1}{\pi} \int_{-\Lambda^2}^{0} dt \frac{\text{Im}\,\kappa_{p,n}(t)}{t - m_{\pi}^2} \left(\frac{m_{\pi}^2}{t}\right)^1$$

- In lattice QCD, the isovector nucleon (p n) is used, so that calculations involving all-to-all propagators cancel.
- The isovector nucleon AMM formula may also include a term linear in m_{π}^2 if desired (for fitting):

$$\kappa_{\rm isov}(m_{\pi}^2;\Lambda^2) = \kappa_p(m_{\pi}^2;\Lambda^2) - \kappa_n(m_{\pi}^2;\Lambda^2) + a_2 m_{\pi}^2$$

$$\kappa_{p,n}^{\text{FRR}} = \overset{\circ}{\kappa}_{p,n} - \frac{1}{\pi} \int_{-\Lambda^2}^{0} dt \frac{\text{Im}\,\kappa_{p,n}(t)}{t - m_{\pi}^2} \left(\frac{m_{\pi}^2}{t}\right)^1$$

- In lattice QCD, the isovector nucleon (p n) is used, so that calculations involving all-to-all propagators cancel.
- The isovector nucleon AMM formula may also include a term linear in m_{π}^2 if desired (for fitting):

$$\kappa_{\mathrm{isov}}(m_{\pi}^2; \Lambda^2) = \kappa_{\rho}(m_{\pi}^2; \Lambda^2) - \kappa_n(m_{\pi}^2; \Lambda^2) + a_2 m_{\pi}^2$$

Figure: The Λ -dependence of leading-order loop contributions to the isovector nucleon AMM, calculated in HB χ PT (blue dashed curves) and B χ PT (red solid curves) at $m_{\pi}^2 = m_{\pi, phys}^2$.

- We shall also consider the magnetic polarizability, β_p , of the proton.
- Its leading-order contribution is a 1-pion loop with minimal insertion of two photons.
- The imaginary part of the polarizability in HB χ PT is:

$$\operatorname{Im} \beta_{\rho}(t) \stackrel{\mathrm{HB}}{=} -\frac{\alpha}{18} \chi \frac{1}{\sqrt{-t}} \, \theta(-t) \quad (\alpha \simeq 1/137).$$

- We shall also consider the magnetic polarizability, β_p , of the proton.
- Its leading-order contribution is a 1-pion loop with minimal insertion of two photons.
- The imaginary part of the polarizability in HB χ PT is:

$$\operatorname{Im} \beta_{\rho}(t) \stackrel{\operatorname{HB}}{=} -\frac{\alpha}{18} \chi \frac{1}{\sqrt{-t}} \theta(-t) \quad (\alpha \simeq 1/137).$$

• Here, the leading-order nonanalytic term is $\sim 1/m_{\pi}$. No subtractions are required. Furthermore, this negative power of m_{π}^2 will have consequences for the heavy-baryon expansion.

- We shall also consider the magnetic polarizability, β_p , of the proton.
- Its leading-order contribution is a 1-pion loop with minimal insertion of two photons.
- The imaginary part of the polarizability in HB χ PT is:

$$\operatorname{Im} \beta_{\rho}(t) \stackrel{\operatorname{HB}}{=} -\frac{\alpha}{18} \chi \frac{1}{\sqrt{-t}} \theta(-t) \quad (\alpha \simeq 1/137).$$

- We shall also consider the magnetic polarizability, β_p , of the proton.
- Its leading-order contribution is a 1-pion loop with minimal insertion of two photons.
- The imaginary part of the polarizability in HB χ PT is:

$$\operatorname{Im} \beta_{\rho}(t) \stackrel{\mathrm{HB}}{=} -\frac{\alpha}{18} \chi \frac{1}{\sqrt{-t}} \theta(-t) \quad (\alpha \simeq 1/137).$$

- We shall also consider the magnetic polarizability, β_p , of the proton.
- Its leading-order contribution is a 1-pion loop with minimal insertion of two photons.
- The imaginary part of the polarizability in HB χ PT is:

$$\operatorname{Im} \beta_{\rho}(t) \stackrel{\mathrm{HB}}{=} -\frac{\alpha}{18} \chi \frac{1}{\sqrt{-t}} \theta(-t) \quad (\alpha \simeq 1/137).$$

Figure: The Λ -dependence of leading-order loop contributions to the proton magnetic polarizability, calculated in HB χ PT (blue dashed curves) and B χ PT (red solid curves) at $m_{\pi}^2 = m_{\pi, phys}^2$.

- The residual Λ -dependence in HB χ PT falls off as $1/\Lambda$ in all examples, whereas in B χ PT, it behaves as $1/\Lambda^2$ for M_N , and $1/\Lambda^4$ for the AMMs and polarizability.
- The stronger dependence on Λ indicates a greater impact from the unknown high-energy physics to be renormalized.
- Note, however, that the HB χ PT and B χ PT results are identical in the limit $\Lambda \rightarrow 0$ (guaranteed).

- The residual Λ -dependence in HB χ PT falls off as $1/\Lambda$ in all examples, whereas in B χ PT, it behaves as $1/\Lambda^2$ for M_N , and $1/\Lambda^4$ for the AMMs and polarizability.
- The stronger dependence on ∧ indicates a greater impact from the unknown high-energy physics to be renormalized.
- Note, however, that the HB χ PT and B χ PT results are identical in the limit $\Lambda \rightarrow 0$ (guaranteed).

- The residual Λ -dependence in HB χ PT falls off as $1/\Lambda$ in all examples, whereas in B χ PT, it behaves as $1/\Lambda^2$ for M_N , and $1/\Lambda^4$ for the AMMs and polarizability.
- The stronger dependence on Λ indicates a greater impact from the unknown high-energy physics to be renormalized.
- Note, however, that the HB χ PT and B χ PT results are identical in the limit $\Lambda \rightarrow 0$ (guaranteed).

- In the case of the magnetic polarizability of the proton, there is significant difference in the results, even at $\Lambda \sim m_{\pi, \text{physical}} \ll 1$ GeV, and the results are the opposite sign!
- This is because the B χ PT formula contains contributions $\sim -1/\hat{M}_N$, which are largely underestimated in HB χ PT.
- Recalling the formula:

$$\tilde{\Sigma}_{f}^{\mathrm{HB}}(m_{\pi}^{2};\Lambda) = -2\chi m_{\pi}^{2n-1} \arctan \frac{\Lambda}{m_{\pi}},$$

the power index, n, allows us to classify the naturalness of the heavy-baryon expansion. The lower the value of n, the greater the difficulty for HB χ PT to describe a quantity.

The fact that n = 0, i.e. negative powers of m_π, indicates a dramatic failure of HB_χPT, as observed.

- In the case of the magnetic polarizability of the proton, there is significant difference in the results, even at $\Lambda \sim m_{\pi, \text{physical}} \ll 1$ GeV, and the results are the opposite sign!
- This is because the B χ PT formula contains contributions $\sim -1/\hat{M}_N$, which are largely underestimated in HB χ PT.
- Recalling the formula:

$$\tilde{\Sigma}_{f}^{\mathrm{HB}}(m_{\pi}^{2};\Lambda) = -2\chi m_{\pi}^{2n-1} \arctan \frac{\Lambda}{m_{\pi}}$$

the power index, *n*, allows us to classify the naturalness of the heavy-baryon expansion. The lower the value of *n*, the greater the difficulty for HB χ PT to describe a quantity.

The fact that n = 0, i.e. negative powers of m_π, indicates a dramatic failure of HB_χPT, as observed.

- In the case of the magnetic polarizability of the proton, there is significant difference in the results, even at $\Lambda \sim m_{\pi, \text{physical}} \ll 1$ GeV, and the results are the opposite sign!
- This is because the B χ PT formula contains contributions $\sim -1/\hat{M}_N$, which are largely underestimated in HB χ PT.
- Recalling the formula:

$$\tilde{\Sigma}_{f}^{\mathrm{HB}}(m_{\pi}^{2};\Lambda) = -2\chi m_{\pi}^{2n-1} \arctan \frac{\Lambda}{m_{\pi}}$$

the power index, *n*, allows us to classify the naturalness of the heavy-baryon expansion. The lower the value of *n*, the greater the difficulty for HB χ PT to describe a quantity.

The fact that n = 0, i.e. negative powers of m_π, indicates a dramatic failure of HB_χPT, as observed.

Dependence on the cutoff Λ

- In the case of the magnetic polarizability of the proton, there is significant difference in the results, even at $\Lambda \sim m_{\pi, \text{physical}} \ll 1$ GeV, and the results are the opposite sign!
- This is because the B χ PT formula contains contributions $\sim -1/\hat{M}_N$, which are largely underestimated in HB χ PT.
- Recalling the formula:

$$\tilde{\Sigma}_{f}^{\mathrm{HB}}(m_{\pi}^{2};\Lambda) = -2\chi m_{\pi}^{2n-1} \arctan \frac{\Lambda}{m_{\pi}},$$

the power index, *n*, allows us to classify the naturalness of the heavy-baryon expansion. The lower the value of *n*, the greater the difficulty for HB χ PT to describe a quantity.

The fact that n = 0, i.e. negative powers of m_π, indicates a dramatic failure of HB_χPT, as observed.

Dependence on the cutoff Λ

- In the case of the magnetic polarizability of the proton, there is significant difference in the results, even at $\Lambda \sim m_{\pi, \text{physical}} \ll 1$ GeV, and the results are the opposite sign!
- This is because the B χ PT formula contains contributions $\sim -1/\hat{M}_N$, which are largely underestimated in HB χ PT.
- Recalling the formula:

$$ilde{\Sigma}_{f}^{ ext{HB}}(m_{\pi}^{2};\Lambda) = -2\chi m_{\pi}^{2n-1} \arctan rac{\Lambda}{m_{\pi}},$$

the power index, n, allows us to classify the naturalness of the heavy-baryon expansion. The lower the value of n, the greater the difficulty for HB χ PT to describe a quantity.

The fact that n = 0, i.e. negative powers of m_π, indicates a dramatic failure of HBχPT, as observed.

Dependence on the cutoff Λ

- In the case of the magnetic polarizability of the proton, there is significant difference in the results, even at $\Lambda \sim m_{\pi, \text{physical}} \ll 1$ GeV, and the results are the opposite sign!
- This is because the B χ PT formula contains contributions $\sim -1/\hat{M}_N$, which are largely underestimated in HB χ PT.
- Recalling the formula:

$$ilde{\Sigma}_{f}^{ ext{HB}}(m_{\pi}^{2};\Lambda) = -2\chi m_{\pi}^{2n-1} \arctan rac{\Lambda}{m_{\pi}},$$

the power index, n, allows us to classify the naturalness of the heavy-baryon expansion. The lower the value of n, the greater the difficulty for HB χ PT to describe a quantity.

The fact that n = 0, i.e. negative powers of m_π, indicates a dramatic failure of HBχPT, as observed.

Confronting the data: chiral extrapolation

An improved chiral expansion using a pion-mass dispersion relation

• The results of χPT must be matched to an underlying theory.

- In the case of polarizabilities, there are no unknown parameters at leading order, so a χPT result is a genuine prediction.
 But: there are currently no lattice results to use, and the experimental value is uncertain.
- For the nucleon mass, we don't expect much difference between HB χ PT and B χ PT near the physical pion mass, but the difference can be significant for larger pion masses.
- For the AMM, the leading-order nonanalytic term occurs at a lower order than for the nucleon mass, placing more importance on the chiral curvature.

- The results of χPT must be matched to an underlying theory.
- In the case of polarizabilities, there are no unknown parameters at leading order, so a \chi_PT result is a genuine prediction.
 But: there are currently no lattice results to use, and the experimental value is uncertain.
- For the nucleon mass, we don't expect much difference between HB χ PT and B χ PT near the physical pion mass, but the difference can be significant for larger pion masses.
- For the AMM, the leading-order nonanalytic term occurs at a lower order than for the nucleon mass, placing more importance on the chiral curvature.

- The results of χPT must be matched to an underlying theory.
- In the case of polarizabilities, there are no unknown parameters at leading order, so a \chi_PT result is a genuine prediction.
 But: there are currently no lattice results to use, and the experimental value is uncertain.
- For the nucleon mass, we don't expect much difference between HB χ PT and B χ PT near the physical pion mass, but the difference can be significant for larger pion masses.
- For the AMM, the leading-order nonanalytic term occurs at a lower order than for the nucleon mass, placing more importance on the chiral curvature.

- The results of χPT must be matched to an underlying theory.
- In the case of polarizabilities, there are no unknown parameters at leading order, so a \chi_PT result is a genuine prediction.
 But: there are currently no lattice results to use, and the experimental value is uncertain.
- For the nucleon mass, we don't expect much difference between $HB\chi PT$ and $B\chi PT$ near the physical pion mass, but the difference can be significant for larger pion masses.
- For the AMM, the leading-order nonanalytic term occurs at a lower order than for the nucleon mass, placing more importance on the chiral curvature.

- The results of χPT must be matched to an underlying theory.
- In the case of polarizabilities, there are no unknown parameters at leading order, so a \chi_PT result is a genuine prediction.
 But: there are currently no lattice results to use, and the experimental value is uncertain.
- For the nucleon mass, we don't expect much difference between $HB\chi PT$ and $B\chi PT$ near the physical pion mass, but the difference can be significant for larger pion masses.
- For the AMM, the leading-order nonanalytic term occurs at a lower order than for the nucleon mass, placing more importance on the chiral curvature.

Figure: Chiral extrapolations of the nucleon mass for HB χ PT compared to B χ PT at $\Lambda = 0.5$ GeV. The extrapolation based on PACS-CS results, box size: 2.9 fm. Finite-volume effects are neglected.

Figure: Chiral extrapolations of the nucleon mass for HB χ PT compared to B χ PT at $\Lambda = 1.0$ GeV. The extrapolation based on PACS-CS results, box size: 2.9 fm. Finite-volume effects are neglected.

Figure: Chiral extrapolations of the nucleon mass for HB χ PT compared to B χ PT at $\Lambda = 2.0$ GeV. The extrapolation based on PACS-CS results, box size: 2.9 fm. Finite-volume effects are neglected.

Figure: Chiral extrapolations of the nucleon mass for HB χ PT compared to B χ PT at $\Lambda = 0.5$ GeV. The extrapolation based on JLQCD results, box size: 1.9 fm. Finite-volume effects are neglected.

Figure: Chiral extrapolations of the nucleon mass for HB χ PT compared to B χ PT at $\Lambda = 1.0$ GeV. The extrapolation based on JLQCD results, box size: 1.9 fm. Finite-volume effects are neglected.

Figure: Chiral extrapolations of the nucleon mass for HB χ PT compared to B χ PT at $\Lambda = 2.0$ GeV. The extrapolation based on JLQCD results, box size: 1.9 fm. Finite-volume effects are neglected.

- For small values of Λ, the chiral loops are suppressed, an almost-linear fit ensues, yielding a poor fit to the low pion-mass lattice results.
- For large values of Λ , the HB χ PT result struggles to fit the lattice results due to large curvature in the heavy pion-mass region.
- The best cutoff scale to use appears to be $\Lambda \simeq 1$ GeV, in agreement with previous FRR studies.
- Overall, the $B\chi PT$ result is less sensitive to changes in the cutoff scale, Λ , leading to a more stable fit.

- For small values of Λ, the chiral loops are suppressed, an almost-linear fit ensues, yielding a poor fit to the low pion-mass lattice results.
- For large values of Λ , the HB χ PT result struggles to fit the lattice results due to large curvature in the heavy pion-mass region.
- The best cutoff scale to use appears to be $\Lambda \simeq 1$ GeV, in agreement with previous FRR studies.
- Overall, the $B\chi PT$ result is less sensitive to changes in the cutoff scale, Λ , leading to a more stable fit.

- For small values of Λ, the chiral loops are suppressed, an almost-linear fit ensues, yielding a poor fit to the low pion-mass lattice results.
- For large values of Λ , the HB χ PT result struggles to fit the lattice results due to large curvature in the heavy pion-mass region.
- The best cutoff scale to use appears to be $\Lambda \simeq 1$ GeV, in agreement with previous FRR studies.
- Overall, the $B\chi PT$ result is less sensitive to changes in the cutoff scale, Λ , leading to a more stable fit.

- For small values of Λ, the chiral loops are suppressed, an almost-linear fit ensues, yielding a poor fit to the low pion-mass lattice results.
- For large values of Λ , the HB χ PT result struggles to fit the lattice results due to large curvature in the heavy pion-mass region.
- The best cutoff scale to use appears to be $\Lambda\simeq 1$ GeV, in agreement with previous FRR studies.
- Overall, the BχPT result is less sensitive to changes in the cutoff scale, Λ, leading to a more stable fit.

Figure: Chiral extrapolations of the isovector nucleon AMM for HB χ PT compared to B χ PT at $\Lambda = 0.5$ GeV. The extrapolation based on QCDSF results, box size: 1.7 - 2.9 fm. Finite-volume effects are neglected.

Figure: Chiral extrapolations of the isovector nucleon AMM for HB χ PT compared to B χ PT at $\Lambda = 0.8$ GeV. The extrapolation based on QCDSF results, box size: 1.7 – 2.9 fm. Finite-volume effects are neglected.

Figure: Chiral extrapolations of the isovector nucleon AMM for HB χ PT compared to B χ PT at $\Lambda = 1.0$ GeV. The extrapolation based on QCDSF results, box size: 1.7 – 2.9 fm. Finite-volume effects are neglected.

- In the AMM extrapolation, we see larger chiral curvature than the case of M_N , because of its lower-order leading nonanalytic term $(\sim m_{\pi})$.
- For this reason, the HB χ PT extrapolation becomes unfavorable at large values of Λ , with large curvature for $\Lambda \gtrsim 1$ GeV.
- Even with the inclusion of the linear 'a₂ term', which plays the role of compensating for high-momentum contributions, the BχPT result is much more stable to changes in ultraviolet behaviour.

- In the AMM extrapolation, we see larger chiral curvature than the case of M_N , because of its lower-order leading nonanalytic term $(\sim m_{\pi})$.
- For this reason, the HB χ PT extrapolation becomes unfavorable at large values of Λ , with large curvature for $\Lambda \gtrsim 1$ GeV.
- Even with the inclusion of the linear 'a₂ term', which plays the role of compensating for high-momentum contributions, the BχPT result is much more stable to changes in ultraviolet behaviour.

- In the AMM extrapolation, we see larger chiral curvature than the case of M_N , because of its lower-order leading nonanalytic term $(\sim m_{\pi})$.
- For this reason, the HB χ PT extrapolation becomes unfavorable at large values of Λ , with large curvature for $\Lambda \gtrsim 1$ GeV.
- Even with the inclusion of the linear ' a_2 term', which plays the role of compensating for high-momentum contributions, the B χ PT result is much more stable to changes in ultraviolet behaviour.

- We utilised a pion-mass dispersion relation to examine analytic properties of static quantities in chiral perturbation theory.
- We incorporated the useful properties of finite-range regularization into our chiral expansion formulae.
- We derived a relativistic improvement (BχPT) to our chiral formulae for the mass and anomalous magnetic moment of the nucleon, and the magnetic polarizability of the proton.
- We tested the new BχPT formulae by comparing their dependence on the ultraviolet cutoff, Λ, with that of the heavy-baryon expansion (HBχPT), using lattice QCD results. The BχPT formulae produced more reliable chiral extrapolations.
- We discovered a possible method for determining when then heavy-baryon expansion becomes unnatural.

- We utilised a pion-mass dispersion relation to examine analytic properties of static quantities in chiral perturbation theory.
- We incorporated the useful properties of finite-range regularization into our chiral expansion formulae.
- We derived a relativistic improvement (BχPT) to our chiral formulae for the mass and anomalous magnetic moment of the nucleon, and the magnetic polarizability of the proton.
- We tested the new BχPT formulae by comparing their dependence on the ultraviolet cutoff, Λ, with that of the heavy-baryon expansion (HBχPT), using lattice QCD results. The BχPT formulae produced more reliable chiral extrapolations.
- We discovered a possible method for determining when then heavy-baryon expansion becomes unnatural.

- We utilised a pion-mass dispersion relation to examine analytic properties of static quantities in chiral perturbation theory.
- We incorporated the useful properties of finite-range regularization into our chiral expansion formulae.
- We derived a relativistic improvement (B χ PT) to our chiral formulae for the mass and anomalous magnetic moment of the nucleon, and the magnetic polarizability of the proton.
- We tested the new BχPT formulae by comparing their dependence on the ultraviolet cutoff, Λ, with that of the heavy-baryon expansion (HBχPT), using lattice QCD results. The BχPT formulae produced more reliable chiral extrapolations.
- We discovered a possible method for determining when then heavy-baryon expansion becomes unnatural.

- We utilised a pion-mass dispersion relation to examine analytic properties of static quantities in chiral perturbation theory.
- We incorporated the useful properties of finite-range regularization into our chiral expansion formulae.
- We derived a relativistic improvement $(B\chi PT)$ to our chiral formulae for the mass and anomalous magnetic moment of the nucleon, and the magnetic polarizability of the proton.
- We tested the new BχPT formulae by comparing their dependence on the ultraviolet cutoff, Λ, with that of the heavy-baryon expansion (HBχPT), using lattice QCD results. The BχPT formulae produced more reliable chiral extrapolations.
- We discovered a possible method for determining when then heavy-baryon expansion becomes unnatural.

- We utilised a pion-mass dispersion relation to examine analytic properties of static quantities in chiral perturbation theory.
- We incorporated the useful properties of finite-range regularization into our chiral expansion formulae.
- We derived a relativistic improvement $(B\chi PT)$ to our chiral formulae for the mass and anomalous magnetic moment of the nucleon, and the magnetic polarizability of the proton.
- We tested the new BχPT formulae by comparing their dependence on the ultraviolet cutoff, Λ, with that of the heavy-baryon expansion (HBχPT), using lattice QCD results. The BχPT formulae produced more reliable chiral extrapolations.
- We discovered a possible method for determining when then heavy-baryon expansion becomes unnatural.

Helpful references

- Limitations of the heavy-baryon expansion: J. M. M. Hall and V. Pascalutsa, arXiv:1203.0724 [hep-ph].
- The pion-mass dispersion relation: T. Ledwig, V. Pascalutsa & M. Vanderhaeghen, Phys.Lett. **B690**, 129 (2010), 1004.3449.
- 'Naturalness': H. Georgi, Nucl.Phys. B361, 339 (1991).
- The magnetic polarizability of the proton: V. Lensky and V. Pascalutsa, Eur.Phys.J. **C65**, 195 (2010), 0907.0451.
- Nucleon mass lattice QCD results:
 - S. Aoki *et al.*, (PACS-CS Collaboration), Phys.Rev. **D79**, 034503 (2009), 0807.1661.
 - H. Ohki et al., Phys.Rev. D78, 054502 (2008), 0806.4744.
- AMM lattice QCD results: S. Collins, M. Gockeler, P. Hagler, R. Horsley, Y. Nakamura, J. Zanotti *et al.*, Phys.Rev. D84, 074507, (2011), 1106.3580.

Appendix

An improved chiral expansion using a pion-mass dispersion relation

FRR $B\chi PT$ chiral formulae

• The relativistically-improved chiral formula for κ_p is:

$$\begin{split} \kappa_{p}^{\text{FRR}} &\stackrel{\text{B}}{=} \stackrel{\circ}{\kappa_{p}} \\ &+ \frac{2\chi}{3\pi} \hat{M}_{N}^{2} \Biggl\{ \frac{m_{\pi} (-8 + 22\frac{m_{\pi}}{\hat{M}_{N}^{2}} - 6\frac{m_{\pi}^{4}}{\hat{M}_{N}^{4}})}{\hat{M}_{N} \sqrt{4 - \frac{m_{\pi}^{2}}{\hat{M}_{N}^{2}}}} \arctan\left(\frac{\Lambda}{m_{\pi}} \sqrt{\frac{4\hat{M}_{N}^{2} - m_{\pi}^{2}}{4\hat{M}_{N}^{2} + \Lambda^{2}}}\right) \\ &- \frac{m_{\pi}^{2}}{\hat{M}_{N}^{2}} \left(5 - \frac{3m_{\pi}^{2}}{\hat{M}_{N}^{2}}\right) \left[2 \operatorname{arcsinh} \frac{\Lambda}{2\hat{M}_{N}} + \log\frac{m_{\pi}^{2}}{m_{\pi}^{2} + \Lambda^{2}}\right] \\ &+ \frac{3m_{\pi}^{2}\Lambda^{2}}{\hat{M}_{N}^{4}} \left(1 - \sqrt{1 + \frac{4\hat{M}_{N}^{2}}{\Lambda^{2}}}\right) \Biggr\}. \end{split}$$

FRR $B\chi$ PT chiral formulae

• The relativistically-improved chiral formula for κ_n is:

$$\kappa_{n} = \overset{\circ}{\kappa_{n}} + \frac{8\chi}{3\pi} \hat{M}_{N}^{2} \Biggl\{ \frac{m_{\pi} (2 - \frac{m_{\pi}^{2}}{\hat{M}_{N}^{2}})}{\hat{M}_{N} \left(4 - \frac{m_{\pi}^{2}}{\hat{M}_{N}^{2}}\right)^{1/2}} \arctan\left(\frac{\Lambda}{m_{\pi}} \sqrt{\frac{4\hat{M}_{N}^{2} - m_{\pi}^{2}}{4\hat{M}_{N}^{2} + \Lambda^{2}}}\right) + \frac{m_{\pi}^{2}}{2\hat{M}_{N}^{2}} \left[2 \operatorname{arcsinh} \frac{\Lambda}{2\hat{M}_{N}} + \log \frac{m_{\pi}^{2}}{m_{\pi}^{2} + \Lambda^{2}}\right]\Biggr\}.$$

Appendix

FRR $B\chi PT$ chiral formulae $\beta_{p} = \frac{2\alpha \chi}{9\pi} \left\{ \frac{2(2 - 246\frac{m_{\pi}^{2}}{\hat{M}_{N}^{2}} + 471\frac{m_{\pi}^{4}}{\hat{M}_{N}^{4}} - 212\frac{m_{\pi}^{6}}{\hat{M}_{N}^{6}} + 27\frac{m_{\pi}^{8}}{\hat{M}_{N}^{8}})}{m_{\pi} \left(4 - \frac{m_{\pi}^{2}}{\hat{M}_{A}^{2}}\right)^{3/2}} \right\}$ $\times \arctan\left(\frac{\Lambda}{m_{\pi}}\sqrt{\frac{4\hat{M}_{N}^{2}-m_{\pi}^{2}}{4\hat{M}_{N}^{2}+\Lambda^{2}}}\right)-\left(\frac{9}{\hat{M}_{N}}-\frac{50m_{\pi}^{2}}{\hat{M}_{N}^{3}}+\frac{27m_{\pi}^{4}}{\hat{M}_{N}^{5}}\right)$ $\times \left[2\operatorname{arcsinh}\frac{\Lambda}{2\hat{M}_{M}} + \log\frac{m_{\pi}^{2}}{m_{\pi}^{2} + \Lambda^{2}}\right] - \frac{\Lambda^{2}}{\hat{M}_{\pi}^{3}} \left[\frac{27(\Lambda^{2} - 2m_{\pi}^{2})}{2\hat{M}^{2}}\right]$ $imes \left(1-\sqrt{1+rac{4\hat{M}_N^2}{\Lambda^2}} ight)+50-23\sqrt{1+rac{4\hat{M}_N^2}{\Lambda^2}}$ $\frac{51\hat{M}_{N}^{6}}{\Lambda^{2}(4\hat{M}_{N}^{2}+\Lambda^{2})(4\hat{M}_{N}^{2}-m_{\pi}^{2})}\Big]\bigg\}.$

An improved chiral expansion using a pion-mass dispersion relation