An improved chiral expansion using a pion-mass dispersion relation

Jonathan Hall
CSSM, University of Adelaide

Vladimir Pascalutsa
KPH, Johannes Gutenberg Universität, Mainz

THE UNIVERSITY
OF ADELAIDE AUSTRALIA

Overview

- Aims
- Introduction
- The pion-mass dispersion relation
- Example: the nucleon mass
- Subtractions \& renormalization
- Adding in finite-range regularization (FRR)
- Baryon chiral perturbation theory (B χ PT)
- Confronting the data: chiral extrapolation
- Conclusion

Aims

- to understand the chiral behaviour of hadrons, and obtain a quantitative description of chiral symmetry breaking.
- to improve relativistically upon the properties of the heavy-baryon expansion, leading to baryon chiral perturbation theory ($\mathrm{B} \chi \mathrm{PT}$).
- to import the method of finite-range regularization (FRR) without compromising any symmetries, whilst inheriting its advantageous features.
- to perform a more reliable chiral extrapolation of lattice QCD results, i.e. reducing the systematic uncertainty.

Aims

- to understand the chiral behaviour of hadrons, and obtain a quantitative description of chiral symmetry breaking.
- to improve relativistically upon the properties of the heavy-baryon expansion, leading to baryon chiral perturbation theory ($\mathrm{B} \chi \mathrm{PT}$).
- to import the method of finite-range regularization (FRR) without compromising any symmetries, whilst inheriting its advantageous features.
- to perform a more reliable chiral extrapolation of lattice QCD results, i.e. reducing the systematic uncertainty.

Aims

- to understand the chiral behaviour of hadrons, and obtain a quantitative description of chiral symmetry breaking.
- to improve relativistically upon the properties of the heavy-baryon expansion, leading to baryon chiral perturbation theory ($\mathrm{B} \chi \mathrm{PT}$).
- to import the method of finite-range regularization (FRR) without compromising any symmetries, whilst inheriting its advantageous features.
- to perform a more reliable chiral extrapolation of lattice QCD results, i.e. reducing the systematic uncertainty.

Aims

- to understand the chiral behaviour of hadrons, and obtain a quantitative description of chiral symmetry breaking.
- to improve relativistically upon the properties of the heavy-baryon expansion, leading to baryon chiral perturbation theory ($\mathrm{B} \chi \mathrm{PT}$).
- to import the method of finite-range regularization (FRR) without compromising any symmetries, whilst inheriting its advantageous features.
- to perform a more reliable chiral extrapolation of lattice QCD results, i.e. reducing the systematic uncertainty.

Introduction

What is a dispersion relation?

- A Kramers-Kronig dispersion relation tells us about the analyticity of a complex function.

What is a dispersion relation?

- A Kramers-Kronig dispersion relation tells us about the analyticity of a complex function.
- Recall that an analytic function may be written $f=u+i v$ (u, v : real-valued on some domain Ω). The real part of f, (i.e. u) can be defined in terms of its harmonic conjugate (v) via a Hilbert transform:

- We'll find: in chiral perturbation theory $(\chi$ PT $), t$ equals m_{q}, and the princinal value integral becomes an integral over the negative real-axis of m_{q}.

What is a dispersion relation?

- A Kramers-Kronig dispersion relation tells us about the analyticity of a complex function.
- Recall that an analytic function may be written $f=u+i v$ (u, v : real-valued on some domain Ω). The real part of f, (i.e. u) can be defined in terms of its harmonic conjugate (v) via a Hilbert transform:

$$
u\left(t_{0}\right)=\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{\infty} \mathrm{d} t \frac{v(t)}{t-t_{0}}, \quad t_{0}, t \in \Omega .
$$

- We'll find: in chiral perturbation theory $(\chi \mathrm{PT}), t$ equals m_{q}, and the principal value integral becomes an integral over the negative real-axis of m_{q}.

What is a dispersion relation?

- A Kramers-Kronig dispersion relation tells us about the analyticity of a complex function.
- Recall that an analytic function may be written $f=u+i v$ (u, v : real-valued on some domain Ω). The real part of f, (i.e. u) can be defined in terms of its harmonic conjugate (v) via a Hilbert transform:

$$
u\left(t_{0}\right)=\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{\infty} \mathrm{d} t \frac{v(t)}{t-t_{0}}, \quad t_{0}, t \in \Omega .
$$

- We'll find: in chiral perturbation theory ($\chi \mathrm{PT}$), t equals m_{q}, and the principal value integral becomes an integral over the negative real-axis of m_{q}.

Why the pion mass?

- In χ PT, the quark mass, m_{q}, is not a fixed parameter. We expand about the 'chiral limit', $m_{q} \rightarrow 0$, to obtain chiral formulae.
- Observables such as nucleon mass $\left(f \equiv M_{N}\right)$ or anomalous magnetic moment $(\mathrm{AMM})(f \equiv \kappa)$ become functions of m_{q}
- The quark mass is related to the pion-mass squared by the Gell-Mann-Oakes-Renner Relation (GOR): $m_{q} \propto m_{\pi}^{2}$
- Looking at the complex plane of m_{π}^{2}, the observables, f, are analytic- except for a branch-cut in the negative real-axis, associated with pion-production.

Why the pion mass?

- In χ PT, the quark mass, m_{q}, is not a fixed parameter. We expand about the 'chiral limit', $m_{q} \rightarrow 0$, to obtain chiral formulae.
- Observables such as nucleon mass ($f \equiv M_{N}$) or anomalous magnetic moment (AMM) ($f \equiv \kappa$) become functions of m_{q}.
- The quark mass is related to the pion-mass squared by the Gell-Mann-Oakes-Renner Relation (GOR): $m_{q} \propto m_{\pi}^{2}$
- Looking at the complex plane of m_{π}^{2}, the observables, f, are analytic- except for a branch-cut in the negative real-axis, associated with pion-production.

Why the pion mass?

- In χ PT, the quark mass, m_{q}, is not a fixed parameter. We expand about the 'chiral limit', $m_{q} \rightarrow 0$, to obtain chiral formulae.
- Observables such as nucleon mass ($f \equiv M_{N}$) or anomalous magnetic moment (AMM) ($f \equiv \kappa$) become functions of m_{q}.
- The quark mass is related to the pion-mass squared by the Gell-Mann-Oakes-Renner Relation (GOR): $m_{q} \propto m_{\pi}^{2}$.
- Looking at the complex plane of m_{π}^{2}, the observables, f, are analytic- except for a branch-cut in the negative real-axis, associated with pion-production.

Why the pion mass?

- In χ PT, the quark mass, m_{q}, is not a fixed parameter. We expand about the 'chiral limit', $m_{q} \rightarrow 0$, to obtain chiral formulae.
- Observables such as nucleon mass ($f \equiv M_{N}$) or anomalous magnetic moment (AMM) ($f \equiv \kappa$) become functions of m_{q}.
- The quark mass is related to the pion-mass squared by the Gell-Mann-Oakes-Renner Relation (GOR): $m_{q} \propto m_{\pi}^{2}$.
- Looking at the complex plane of m_{π}^{2}, the observables, f, are analytic- except for a branch-cut in the negative real-axis, associated with pion-production.

Why the pion mass?

Figure: The complex $t=m_{\pi}^{2}$ plane, with the branch-cut along the negative real axis, and the contour indicating the analyticity domain.

A general pion-mass dispersion relation

- The pion-mass dispersion relation takes the general form (for static quantity, f):

- We can analyze the analytic properties of the observables, f, very easily
- any disruption to chiral symmetry is explicitly realized. Violations of analyticity (away from the branch-cut) become apparent immediately.
- the dispersion relation can be used to obtain relativistically improved chiral formulae.

A general pion-mass dispersion relation

- The pion-mass dispersion relation takes the general form (for static quantity, f):

$$
\operatorname{Re} f\left(m_{\pi}^{2}\right)=-\frac{1}{\pi} \int_{-\infty}^{0} \mathrm{~d} t \frac{\operatorname{Im} f(t)}{t-m_{\pi}^{2}}
$$

- We can analyze the analytic properties of the observables, f, very easily:
- any disruption to chiral symmetry is explicitly realized. Violations of analyticity (away from the branch-cut) become apparent immediately.
- the dispersion relation can be used to obtain relativistically improved chiral formulae.

A general pion-mass dispersion relation

- The pion-mass dispersion relation takes the general form (for static quantity, f):

$$
\operatorname{Re} f\left(m_{\pi}^{2}\right)=-\frac{1}{\pi} \int_{-\infty}^{0} \mathrm{~d} t \frac{\operatorname{Im} f(t)}{t-m_{\pi}^{2}}
$$

- We can analyze the analytic properties of the observables, f, very easily:
- any disruption to chiral symmetry is explicitly realized. Violations of analyticity (away from the branch-cut) become apparent immediately.
- the dispersion relation can be used to obtain relativistically improved chiral formulae.

A general pion-mass dispersion relation

- The pion-mass dispersion relation takes the general form (for static quantity, f):

$$
\operatorname{Re} f\left(m_{\pi}^{2}\right)=-\frac{1}{\pi} \int_{-\infty}^{0} \mathrm{~d} t \frac{\operatorname{Im} f(t)}{t-m_{\pi}^{2}}
$$

- We can analyze the analytic properties of the observables, f, very easily:
- any disruption to chiral symmetry is explicitly realized. Violations of analyticity (away from the branch-cut) become apparent immediately.
- the dispersion relation can be used to obtain relativistically improved chiral formulae.

A general pion-mass dispersion relation

- The pion-mass dispersion relation takes the general form (for static quantity, f):

$$
\operatorname{Re} f\left(m_{\pi}^{2}\right)=-\frac{1}{\pi} \int_{-\infty}^{0} \mathrm{~d} t \frac{\operatorname{Im} f(t)}{t-m_{\pi}^{2}}
$$

- We can analyze the analytic properties of the observables, f, very easily:
- any disruption to chiral symmetry is explicitly realized. Violations of analyticity (away from the branch-cut) become apparent immediately.
- the dispersion relation can be used to obtain relativistically improved chiral formulae.

The pion-mass dispersion relation

The pion-mass dispersion relation

Loop-momentum vs. pion-mass

- Consider the mass of the nucleon, $M_{N}\left(m_{\pi}^{2}\right)$, as an example.
- In χ PT, the chiral expansion formula for M_{N}, to order m_{π}^{3}, is: $M_{N}=M_{N}+c_{2} m_{\pi}^{2}+\chi m_{\pi}^{3}$.
- The formula contains analytic and nonanalytic terms. χ is a constant (fixing g_{A}, f_{π}, etc. to their phenomenological values).
- The nonanalytic contribution comes from the leading-order chiral loop integral

Loop-momentum vs. pion-mass

- Consider the mass of the nucleon, $M_{N}\left(m_{\pi}^{2}\right)$, as an example.
- In χ PT, the chiral expansion formula for M_{N}, to order m_{π}^{3}, is:

- The formula contains analytic and nonanalytic terms. χ is a constant (fixing g_{Λ}, f_{π}, etc to their phenomenological values)
- The nonanalytic contribution comes from the leading-order chiral loop integral

Loop-momentum vs. pion-mass

- Consider the mass of the nucleon, $M_{N}\left(m_{\pi}^{2}\right)$, as an example.
- In χ PT, the chiral expansion formula for M_{N}, to order m_{π}^{3}, is:

$$
M_{N}=\stackrel{\circ}{M}_{N}+c_{2} m_{\pi}^{2}+\chi m_{\pi}^{3} .
$$

- The formula contains analytic and nonanalytic terms. χ is a constant (fixing g_{A}, f_{T}, etc. to their phenomenological values)
- The nonanalytic contribution comes from the leading-order chiral loop integral

Loop-momentum vs. pion-mass

- Consider the mass of the nucleon, $M_{N}\left(m_{\pi}^{2}\right)$, as an example.
- In χ PT, the chiral expansion formula for M_{N}, to order m_{π}^{3}, is:

$$
M_{N}=\stackrel{\circ}{M}_{N}+c_{2} m_{\pi}^{2}+\chi m_{\pi}^{3} .
$$

- The formula contains analytic and nonanalytic terms. χ is a constant (fixing g_{A}, f_{π}, etc. to their phenomenological values).
- The nonanalytic contribution comes from the leading-order chiral loop integral

Loop-momentum vs. pion-mass

- Consider the mass of the nucleon, $M_{N}\left(m_{\pi}^{2}\right)$, as an example.
- In χ PT, the chiral expansion formula for M_{N}, to order m_{π}^{3}, is:

$$
M_{N}=\stackrel{\circ}{M}_{N}+c_{2} m_{\pi}^{2}+\chi m_{\pi}^{3} .
$$

- The formula contains analytic and nonanalytic terms. χ is a constant (fixing g_{A}, f_{π}, etc. to their phenomenological values).
- The nonanalytic contribution comes from the leading-order chiral loop integral.

Loop momentum vs. pion mass

- The leading-order 1-pion loop takes the following simplified form in heavy-baryon $\chi \mathrm{PT}(\mathrm{HB} \chi \mathrm{PT})$:

- After a change of integration variable, $t=-k^{2}$, we get:

An improved chiral expansion using a pion-mass dispersion relation

Loop momentum vs. pion mass

- The leading-order 1-pion loop takes the following simplified form in heavy-baryon χ PT (HB $\chi \mathrm{PT})$:

$$
=\Sigma_{\pi N}^{\mathrm{HB}}\left(m_{\pi}^{2}\right)=\chi \frac{2}{\pi} \int_{0}^{\infty} \mathrm{d} k \frac{k^{4}}{k^{2}+m_{\pi}^{2}} .
$$

- After a change of integration variable, $t=-k^{2}$, we get:

Loop momentum vs. pion mass

- The leading-order 1-pion loop takes the following simplified form in heavy-baryon $\chi \mathrm{PT}(\mathrm{HB} \chi \mathrm{PT})$:

- After a change of integration variable, $t=-k^{2}$, we get:

Loop momentum vs. pion mass

- The leading-order 1-pion loop takes the following simplified form in heavy-baryon $\chi \mathrm{PT}(\mathrm{HB} \chi \mathrm{PT})$:

- After a change of integration variable, $t=-k^{2}$, we get:

$$
\sum_{\pi N}^{\mathrm{HB}}\left(m_{\pi}^{2}\right)=-\frac{1}{\pi} \int_{-\infty}^{0} \mathrm{~d} t \frac{\chi(-t)^{3 / 2}}{t-m_{\pi}^{2}} \leftarrow
$$

Loop momentum vs. pion mass

- This formula is simply the dispersion relation, with $\operatorname{Im} \sum_{\pi N}^{\mathrm{HB}}(t)=\chi(-t)^{3 / 2}$, and t taking values on the negative real-axis branch-cut in the complex plane.

```
- The dispersion relation is satisfied, since the nonanalytic term, \(\chi m\)
    from the chiral formula is the only contributor to \(\operatorname{lm} \sum_{\pi N}^{\mathrm{HB}}\left(m_{\pi}^{2}\right)\) at
    order \(m_{\pi}^{3}\)
- We shall use the t-integration form of the loop integral from now
    on, for two main reasons:
    - It is explicitly clear that no symmetries of the theory are violated,
    even if a (sharp) finite-range cutoff in the t-integral is introduced
    - It is usually easier to calculate the imaginary part of the loop
    contribution than to evaluate the pole- and angular-integrations
    (especially without heavy-baryon theory, or for multi-loop
    expressions)
```


Loop momentum vs. pion mass

- This formula is simply the dispersion relation, with $\operatorname{Im} \sum_{\pi N}^{\mathrm{HB}}(t)=\chi(-t)^{3 / 2}$, and t taking values on the negative real-axis branch-cut in the complex plane.
- The dispersion relation is satisfied, since the nonanalytic term, χm_{π}^{3}, from the chiral formula is the only contributor to $\operatorname{Im} \sum_{\pi N}^{\mathrm{HB}}\left(m_{\pi}^{2}\right)$ at order m_{π}^{3}.

```
- We shall use the t-integration form of the loop integral from now
on, for two main reasons:
- it is explicitly clear that no symmetries of the theory are violated,
    even if a (sharp) finite-range cutoff in the t-integral is introduced
- It is usually easier to calculate the imaginary part of the loop
    contribution than to evaluate the pole- and angular-integrations
    (especially without heavy-baryon theory, or for multi-loop
    expressions)
```


Loop momentum vs. pion mass

- This formula is simply the dispersion relation, with $\operatorname{Im} \sum_{\pi N}^{\mathrm{HB}}(t)=\chi(-t)^{3 / 2}$, and t taking values on the negative real-axis branch-cut in the complex plane.
- The dispersion relation is satisfied, since the nonanalytic term, χm_{π}^{3}, from the chiral formula is the only contributor to $\operatorname{Im} \sum_{\pi N}^{\mathrm{HB}}\left(m_{\pi}^{2}\right)$ at order m_{π}^{3}.
- We shall use the t-integration form of the loop integral from now on, for two main reasons:
- It is explicitly clear that no symmetries of the theory are violated, even if a (sharp) finite-range cutoff in the t-integral is introduced
- It is usually easier to calculate the imaginary part of the loop
contribution than to evaluate the pole- and angular-integrations
(especially without heavy-baryon theory, or for multi-loop
expressions)

Loop momentum vs. pion mass

- This formula is simply the dispersion relation, with $\operatorname{Im} \sum_{\pi N}^{\mathrm{HB}}(t)=\chi(-t)^{3 / 2}$, and t taking values on the negative real-axis branch-cut in the complex plane.
- The dispersion relation is satisfied, since the nonanalytic term, χm_{π}^{3}, from the chiral formula is the only contributor to $\operatorname{Im} \sum_{\pi N}^{\mathrm{HB}}\left(m_{\pi}^{2}\right)$ at order m_{π}^{3}.
- We shall use the t-integration form of the loop integral from now on, for two main reasons:
- It is explicitly clear that no symmetries of the theory are violated, even if a (sharp) finite-range cutoff in the t-integral is introduced.
- It is usually easier to calculate the imaginary part of the loop contribution than to evaluate the pole- and angular-integrations (especially without heavy-baryon theory, or for multi-loop expressions)

Loop momentum vs. pion mass

- This formula is simply the dispersion relation, with $\operatorname{Im} \sum_{\pi N}^{\mathrm{HB}}(t)=\chi(-t)^{3 / 2}$, and t taking values on the negative real-axis branch-cut in the complex plane.
- The dispersion relation is satisfied, since the nonanalytic term, χm_{π}^{3}, from the chiral formula is the only contributor to $\operatorname{Im} \sum_{\pi N}^{\mathrm{HB}}\left(m_{\pi}^{2}\right)$ at order m_{π}^{3}.
- We shall use the t-integration form of the loop integral from now on, for two main reasons:
- It is explicitly clear that no symmetries of the theory are violated, even if a (sharp) finite-range cutoff in the t-integral is introduced.
- It is usually easier to calculate the imaginary part of the loop contribution than to evaluate the pole- and angular-integrations (especially without heavy-baryon theory, or for multi-loop expressions).

Subtractions

- We would like to write the chiral formula for $M_{N}\left(m_{\pi}^{2}\right)$ in terms of our new dispersion relation.
- $\sum_{\pi N}^{H B}\left(m_{\pi}^{2}\right)$ gives us the correct nonanalytic contribution to M_{N}, but also gives extra analytic terms:

- The extra terms b_{0} and $b_{2} m_{\pi}^{2}$ should be absorbed (renormalized) into M_{M} and $c_{2} m^{2}$, respectively. Thus, we must subtract off the extra terms from the loop integral $\sum_{\pi N}^{H B}$. (Use C.I.F. for derivatives) $\sum_{\pi N}^{\mathrm{HB}}\left(m_{\pi}^{2}\right)-\sum_{\pi N}^{\mathrm{HB}}(0)-\sum_{\pi N}^{\mathrm{HB}}{ }^{\prime}(0) m_{\pi}^{2}=-\frac{1}{\pi} \int_{-\infty}^{0} \mathrm{~d} t \frac{\operatorname{Im} \sum_{\pi N}^{\mathrm{HB}}(t)}{t-m_{\pi}^{2}}\left(\frac{m_{\pi}^{2}}{t}\right)^{2}$
- For the nucleon mass, evidently two subtractions are required $(n=2)$, and M_{N} and c_{2} are the 'subtraction constants

Subtractions

- We would like to write the chiral formula for $M_{N}\left(m_{\pi}^{2}\right)$ in terms of our new dispersion relation.
- $\sum_{\pi N}^{\mathrm{HB}}\left(m_{\pi}^{2}\right)$ gives us the correct nonanalytic contribution to M_{N}, but also gives extra analytic terms:
- The extra terms b_{0} and $b_{2} m_{\pi}^{2}$ should be absorbed (renormalized) into $M \mathrm{M}$ and $c_{2} \mathrm{~m}^{2}$, respectively. Thus, we must subtract off the extra terms from the loop integral $\sum_{\pi N}^{H B}$. (Use C.I.F. for derivatives) $\sum_{\pi N}^{\mathrm{HB}}\left(m_{\pi}^{2}\right)-\sum_{\pi N}^{\mathrm{HB}}(0)-\sum_{\pi N}^{\mathrm{HB}}{ }^{\prime}(0) m_{\pi}^{2}=-\frac{1}{\pi} \int_{-\infty}^{0} \mathrm{~d} t \frac{\operatorname{Im} \sum_{\pi N}^{\mathrm{HB}}(t)}{t-m_{\pi}^{2}}\left(\frac{m_{\pi}^{2}}{t}\right)^{2}$
- For the nucleon mass, evidently two subtractions are required $(n=2)$, and M_{N} and c_{2} are the 'subtraction constants

Subtractions

- We would like to write the chiral formula for $M_{N}\left(m_{\pi}^{2}\right)$ in terms of our new dispersion relation.
- $\sum_{\pi N}^{\mathrm{HB}}\left(m_{\pi}^{2}\right)$ gives us the correct nonanalytic contribution to M_{N}, but also gives extra analytic terms:

$$
\Sigma_{\pi N}^{\mathrm{HB}}\left(m_{\pi}^{2}\right)=b_{0}+b_{2} m_{\pi}^{2}+\chi m_{\pi}^{3} .
$$

- The extra terms b_{0} and $b_{2} m_{\pi}^{2}$ should be absorbed (renormalized) into M_{N} and $c_{2} m_{\pi}^{2}$, respectively. Thus, we must subtract off the extra terms from the loop integral $\sum_{\pi N^{\prime}}^{\mathrm{HB}}$. (Use C.I.F. for derivatives)

- For the nucleon mass, evidently two subtractions are required ($n=2$) and $M_{n \prime}$ and on are the 'subtraction constants

Subtractions

- We would like to write the chiral formula for $M_{N}\left(m_{\pi}^{2}\right)$ in terms of our new dispersion relation.
- $\sum_{\pi N}^{\mathrm{HB}}\left(m_{\pi}^{2}\right)$ gives us the correct nonanalytic contribution to M_{N}, but also gives extra analytic terms:

$$
\sum_{\pi N}^{\mathrm{HB}}\left(m_{\pi}^{2}\right)=b_{0}+b_{2} m_{\pi}^{2}+\chi m_{\pi}^{3} .
$$

- The extra terms b_{0} and $b_{2} m_{\pi}^{2}$ should be absorbed (renormalized) into \dot{M}_{N} and $c_{2} m_{\pi}^{2}$, respectively. Thus, we must subtract off the extra terms from the loop integral $\sum_{\pi N}^{\mathrm{HB}}$. (Use C.I.F. for derivatives):

- For the nucleon mass, evidently two subtractions are required ($n=2$), and M_{n} and c_{n} are the 'subtraction constants

Subtractions

- We would like to write the chiral formula for $M_{N}\left(m_{\pi}^{2}\right)$ in terms of our new dispersion relation.
- $\sum_{\pi N}^{\mathrm{HB}}\left(m_{\pi}^{2}\right)$ gives us the correct nonanalytic contribution to M_{N}, but also gives extra analytic terms:

$$
\Sigma_{\pi N}^{\mathrm{HB}}\left(m_{\pi}^{2}\right)=b_{0}+b_{2} m_{\pi}^{2}+\chi m_{\pi}^{3}
$$

- The extra terms b_{0} and $b_{2} m_{\pi}^{2}$ should be absorbed (renormalized) into \dot{M}_{N} and $c_{2} m_{\pi}^{2}$, respectively. Thus, we must subtract off the extra terms from the loop integral $\Sigma_{\pi N}^{\mathrm{HB}}$. (Use C.I.F. for derivatives): $\sum_{\pi N}^{\mathrm{HB}}\left(m_{\pi}^{2}\right)-\sum_{\pi N}^{\mathrm{HB}}(0)-\sum_{\pi N}^{\mathrm{HB}}{ }^{\prime}(0) m_{\pi}^{2}=-\frac{1}{\pi} \int_{-\infty}^{0} \mathrm{~d} t \frac{\operatorname{Im} \sum_{\pi N}^{\mathrm{HB}}(t)}{t-m_{\pi}^{2}}\left(\frac{m_{\pi}^{2}}{t}\right)^{2}$.

Subtractions

- We would like to write the chiral formula for $M_{N}\left(m_{\pi}^{2}\right)$ in terms of our new dispersion relation.
- $\sum_{\pi N}^{\mathrm{HB}}\left(m_{\pi}^{2}\right)$ gives us the correct nonanalytic contribution to M_{N}, but also gives extra analytic terms:

$$
\Sigma_{\pi N}^{\mathrm{HB}}\left(m_{\pi}^{2}\right)=b_{0}+b_{2} m_{\pi}^{2}+\chi m_{\pi}^{3}
$$

- The extra terms b_{0} and $b_{2} m_{\pi}^{2}$ should be absorbed (renormalized) into \dot{M}_{N} and $c_{2} m_{\pi}^{2}$, respectively. Thus, we must subtract off the extra terms from the loop integral $\Sigma_{\pi N}^{\mathrm{HB}}$. (Use C.I.F. for derivatives):

$$
\Sigma_{\pi N}^{\mathrm{HB}}\left(m_{\pi}^{2}\right)-\Sigma_{\pi N}^{\mathrm{HB}}(0)-\Sigma_{\pi N}^{\mathrm{HB}}{ }^{\prime}(0) m_{\pi}^{2}=-\frac{1}{\pi} \int_{-\infty}^{0} \mathrm{~d} t \frac{\operatorname{Im} \sum_{\pi N}^{\mathrm{HB}}(t)}{t-m_{\pi}^{2}}\left(\frac{m_{\pi}^{2}}{t}\right)^{2} .
$$

- For the nucleon mass, evidently two subtractions are required ($n=2$), and $\stackrel{\circ}{M}_{N}$ and c_{2} are the 'subtraction constants'.

Subtractions

- The chiral expansion formula for M_{N} can now be written in terms of the subtracted dispersion relation:

- In general, we write the dispersion relation for n subtractions as:

Subtractions

- The chiral expansion formula for M_{N} can now be written in terms of the subtracted dispersion relation:

$$
\begin{aligned}
M_{N} & =\stackrel{\circ}{M}_{N}+c_{2} m_{\pi}^{2}-\frac{1}{\pi} \int_{-\infty}^{0} \mathrm{~d} t \frac{\operatorname{Im} M_{N}(t)}{t-m_{\pi}^{2}}\left(\frac{m_{\pi}^{2}}{t}\right)^{2} \\
& =\stackrel{\circ}{M}_{N}+c_{2} m_{\pi}^{2}+\tilde{\Sigma}_{\pi N}^{\mathrm{HB}}\left(m_{\pi}^{2}\right) .
\end{aligned}
$$

- In general, we write the dispersion relation for n subtractions as:

Subtractions

- The chiral expansion formula for M_{N} can now be written in terms of the subtracted dispersion relation:

$$
\begin{aligned}
M_{N} & =\stackrel{\circ}{M}_{N}+c_{2} m_{\pi}^{2}-\frac{1}{\pi} \int_{-\infty}^{0} \mathrm{~d} t \frac{\operatorname{Im} M_{N}(t)}{t-m_{\pi}^{2}}\left(\frac{m_{\pi}^{2}}{t}\right)^{2} \\
& =\stackrel{\circ}{M}_{N}+c_{2} m_{\pi}^{2}+\tilde{\Sigma}_{\pi N}^{\mathrm{HB}}\left(m_{\pi}^{2}\right) .
\end{aligned}
$$

- In general, we write the dispersion relation for n subtractions as:

Subtractions

- The chiral expansion formula for M_{N} can now be written in terms of the subtracted dispersion relation:

$$
\begin{aligned}
M_{N} & =\stackrel{\circ}{M}_{N}+c_{2} m_{\pi}^{2}-\frac{1}{\pi} \int_{-\infty}^{0} \mathrm{~d} t \frac{\operatorname{Im} M_{N}(t)}{t-m_{\pi}^{2}}\left(\frac{m_{\pi}^{2}}{t}\right)^{2} \\
& =\stackrel{\circ}{M}_{N}+c_{2} m_{\pi}^{2}+\tilde{\Sigma}_{\pi N}^{\mathrm{HB}}\left(m_{\pi}^{2}\right) .
\end{aligned}
$$

- In general, we write the dispersion relation for n subtractions as:

$$
f\left(m_{\pi}^{2}\right)=-\frac{1}{\pi} \int_{-\infty}^{0} \mathrm{~d} t \frac{\operatorname{Im} f(t)}{t-m_{\pi}^{2}}\left(\frac{m_{\pi}^{2}}{t}\right)^{n} .
$$

Finite-range regularization

Finite-range regularization

- Finite-range regularization (FRR) has some useful properties:
- It is suitable for composite particles, where degrees of freedom at higher energy scales exist (quarks/gluons)
- It can be used to determine the nower-counting regime (PCR) of ХPT, where the chiral expansion is convergent [hep-lat/0501028]
- It can be used to improve the heavy-baryon expansion by resumming the chiral series so the higher-order terms are small [hep-lat/0302020]
- It allows a calculation to be performed outside the PCR (at the expense of model-independence, albeit quantifiably) [hep-lat/1002.4924].
- We would like to incorporate these properties into our dispersion relation, without compromising any symmetries.

Finite-range regularization

- Finite-range regularization (FRR) has some useful properties:
- It is suitable for composite particles, where degrees of freedom at higher energy scales exist (quarks/gluons).
- It can be used to determine the power-counting regime (PCR) of χ PT, where the chiral expansion is convergent [hep-lat/0501028]
- It can be used to improve the heavy-baryon expansion by resumming the chiral series so the higher-order terms are small [hep-lat/0302020]
- It allows a calculation to be performed outside the PCR (at the expense of model-independence, albeit quantifiably) [hep-lat/1002.4924]
- We would like to incorporate these properties into our dispersion relation, without compromising any symmetries.

Finite-range regularization

- Finite-range regularization (FRR) has some useful properties:
- It is suitable for composite particles, where degrees of freedom at higher energy scales exist (quarks/gluons).
- It can be used to determine the power-counting regime (PCR) of $\chi \mathrm{PT}$, where the chiral expansion is convergent [hep-lat/0501028].
- It can be used to improve the heavy-baryon expansion by resumming the chiral series so the higher-order terms are small [hep-lat/0302020]
- It allows a calculation to be performed outside the PCR (at the expense of model-independence, albeit quantifiably) [hep-lat/1002.4924]
- We would like to incorporate these properties into our dispersion relation, without compromising any symmetries.

Finite-range regularization

Finite-range regularization

- Finite-range regularization (FRR) has some useful properties:
- It is suitable for composite particles, where degrees of freedom at higher energy scales exist (quarks/gluons).
- It can be used to determine the power-counting regime (PCR) of χ PT, where the chiral expansion is convergent [hep-lat/0501028].
- It can be used to improve the heavy-baryon expansion by resumming the chiral series so the higher-order terms are small [hep-lat/0302020].
- It allows a calculation to be performed outside the PCR (at the expense of model-independence, albeit quantifiably) [hep-lat/1002.4924]
- We would like to incorporate these properties into our dispersion relation, without compromising any symmetries

Finite-range regularization

- Finite-range regularization (FRR) has some useful properties:
- It is suitable for composite particles, where degrees of freedom at higher energy scales exist (quarks/gluons).
- It can be used to determine the power-counting regime (PCR) of χ PT, where the chiral expansion is convergent [hep-lat/0501028].
- It can be used to improve the heavy-baryon expansion by resumming the chiral series so the higher-order terms are small [hep-lat/0302020].
- It allows a calculation to be performed outside the PCR (at the expense of model-independence, albeit quantifiably) [hep-lat/1002.4924].
- We would like to incorporate these properties into our dispersion relation, without compromising any symmetries

Finite-range regularization

- Finite-range regularization (FRR) has some useful properties:
- It is suitable for composite particles, where degrees of freedom at higher energy scales exist (quarks/gluons).
- It can be used to determine the power-counting regime (PCR) of χ PT, where the chiral expansion is convergent [hep-lat/0501028].
- It can be used to improve the heavy-baryon expansion by resumming the chiral series so the higher-order terms are small [hep-lat/0302020].
- It allows a calculation to be performed outside the PCR (at the expense of model-independence, albeit quantifiably) [hep-lat/1002.4924].
- We would like to incorporate these properties into our dispersion relation, without compromising any symmetries.

Introducing a cutoff

- Recall: chiral formulae are not convergent series expansions in general, but are asymptotic expansions in $m_{\pi} / \Lambda_{\chi},\left(\Lambda_{\chi} \simeq 4 \pi f_{\pi} \sim 1\right.$ GeV).
- Consider the dispersion relation integral split into two parts:

- The first integral contains the chiral nonanalytic terms, but has been cut off at the scale: $-\Lambda^{2}$.
- The second integral can be expanded in integer powers of $m_{\pi}^{2} / \Lambda^{2}$, thus contributing analytic terms.
- Any physics above the scale Λ is not described by XPT, and thus should be absorbable into the low-energy coefficients $\left(M N, c_{2}, \ldots\right)$

Introducing a cutoff

- Recall: chiral formulae are not convergent series expansions in general, but are asymptotic expansions in $m_{\pi} / \Lambda_{\chi},\left(\Lambda_{\chi} \simeq 4 \pi f_{\pi} \sim 1\right.$ GeV).
- Consider the dispersion relation integral split into two parts:

- The first integral contains the chiral nonanalytic terms, but has been cut off at the scale: $-\Lambda^{2}$
- The second integral can be expanded in integer powers of $m_{\pi}^{2} / \Lambda^{2}$, thus contributing analytic terms.
- Any physics above the scale Λ is not described by XPT, and thus should be absorbable into the low-energy coefficients (M_{N}, c_{2}, \ldots)

Introducing a cutoff

- Recall: chiral formulae are not convergent series expansions in general, but are asymptotic expansions in $m_{\pi} / \Lambda_{\chi},\left(\Lambda_{\chi} \simeq 4 \pi f_{\pi} \sim 1\right.$ GeV).
- Consider the dispersion relation integral split into two parts:

$$
f\left(m_{\pi}^{2}\right)=-\frac{1}{\pi}\left(\int_{-\Lambda^{2}}^{0} \mathrm{~d} t+\int_{-\infty}^{-\Lambda^{2}} \mathrm{~d} t\right) \frac{\operatorname{Im} f(t)}{t-m_{\pi}^{2}}, \quad \Lambda \sim \Lambda_{\chi}
$$

- The first integral contains the chiral nonanalytic terms, but has been cut off at the scale: $-\Lambda^{2}$
- The second integral can be expanded in integer powers of m_{π}^{2} / \wedge^{2} thus contributing analytic terms.
- Any physics above the scale Λ_{χ} is not described by $\chi \mathrm{PT}$, and thus should be absorbable into the low-energy coefficients ($M N, c_{2}, \ldots$).

Introducing a cutoff

- Recall: chiral formulae are not convergent series expansions in general, but are asymptotic expansions in $m_{\pi} / \Lambda_{\chi},\left(\Lambda_{\chi} \simeq 4 \pi f_{\pi} \sim 1\right.$ GeV).
- Consider the dispersion relation integral split into two parts:

$$
f\left(m_{\pi}^{2}\right)=-\frac{1}{\pi}\left(\int_{-\Lambda^{2}}^{0} \mathrm{~d} t+\int_{-\infty}^{-\Lambda^{2}} \mathrm{~d} t\right) \frac{\operatorname{Im} f(t)}{t-m_{\pi}^{2}}, \quad \Lambda \sim \Lambda_{\chi}
$$

- The first integral contains the chiral nonanalytic terms, but has been cut off at the scale: $-\Lambda^{2}$.
- The second integral can be expanded in integer powers of $m_{\pi}^{2} / \Lambda^{2}$, thus contributing analytic terms.
- Any physics above the scale Λ_{χ} is not described by χ PT, and thus should be absorbable into the low-energy coefficients (M_{N}, c_{2}, \ldots).

Introducing a cutoff

- Recall: chiral formulae are not convergent series expansions in general, but are asymptotic expansions in $m_{\pi} / \Lambda_{\chi},\left(\Lambda_{\chi} \simeq 4 \pi f_{\pi} \sim 1\right.$ GeV).
- Consider the dispersion relation integral split into two parts:

$$
f\left(m_{\pi}^{2}\right)=-\frac{1}{\pi}\left(\int_{-\Lambda^{2}}^{0} \mathrm{~d} t+\int_{-\infty}^{-\Lambda^{2}} \mathrm{~d} t\right) \frac{\operatorname{Im} f(t)}{t-m_{\pi}^{2}}, \quad \Lambda \sim \Lambda_{\chi}
$$

- The first integral contains the chiral nonanalytic terms, but has been cut off at the scale: $-\Lambda^{2}$.
- The second integral can be expanded in integer powers of $m_{\pi}^{2} / \Lambda^{2}$, thus contributing analytic terms.
- Any physics above the scale Λ_{χ} is not described by χ PT, and thus should be absorbable into the low-energy coefficients (M_{N}, c_{2}, \ldots).

Introducing a cutoff

- Recall: chiral formulae are not convergent series expansions in general, but are asymptotic expansions in $m_{\pi} / \Lambda_{\chi},\left(\Lambda_{\chi} \simeq 4 \pi f_{\pi} \sim 1\right.$ GeV).
- Consider the dispersion relation integral split into two parts:

$$
f\left(m_{\pi}^{2}\right)=-\frac{1}{\pi}\left(\int_{-\Lambda^{2}}^{0} \mathrm{~d} t+\int_{-\infty}^{-\Lambda^{2}} \mathrm{~d} t\right) \frac{\operatorname{Im} f(t)}{t-m_{\pi}^{2}}, \quad \Lambda \sim \Lambda_{\chi}
$$

- The first integral contains the chiral nonanalytic terms, but has been cut off at the scale: $-\Lambda^{2}$.
- The second integral can be expanded in integer powers of $m_{\pi}^{2} / \Lambda^{2}$, thus contributing analytic terms.
- Any physics above the scale Λ_{χ} is not described by $\chi \mathrm{PT}$, and thus should be absorbable into the low-energy coefficients ($\stackrel{\circ}{M}_{N}, c_{2}, \ldots$).

Introducing a cutoff

- The second integral generates an infinite series of terms, but they are analytic, and therefore absorbable (in principle) into the low-energy coefficients.
- Since we are working to chiral order m_{π}^{3}, we only have a finite number of low-energy coefficients. But the terms from the second integral should be comparable to other higher-order terms neglected
- Therefore, we can drop the second integral, and have:

The \wedge-dependence of this integral simply reflects the uncertainty
due to higher-order effects from the expansion.

Introducing a cutoff

- The second integral generates an infinite series of terms, but they are analytic, and therefore absorbable (in principle) into the low-energy coefficients.
- Since we are working to chiral order m_{π}^{3}, we only have a finite number of low-energy coefficients. But the terms from the second integral should be comparable to other higher-order terms neglected.
- Therefore, we can drop the second integral, and have:

- The Λ-dependence of this integral simply reflects the uncertainty due to higher-order effects from the expansion

Introducing a cutoff

- The second integral generates an infinite series of terms, but they are analytic, and therefore absorbable (in principle) into the low-energy coefficients.
- Since we are working to chiral order m_{π}^{3}, we only have a finite number of low-energy coefficients. But the terms from the second integral should be comparable to other higher-order terms neglected.
- Therefore, we can drop the second integral, and have:

- The Λ-dependence of this integral simply reflects the uncertainty due to higher-order effects from the expansion

Introducing a cutoff

- The second integral generates an infinite series of terms, but they are analytic, and therefore absorbable (in principle) into the low-energy coefficients.
- Since we are working to chiral order m_{π}^{3}, we only have a finite number of low-energy coefficients. But the terms from the second integral should be comparable to other higher-order terms neglected.
- Therefore, we can drop the second integral, and have:

$$
f\left(m_{\pi}^{2}\right)=-\frac{1}{\pi} \int_{-\Lambda^{2}}^{0} \mathrm{~d} t \frac{\operatorname{Im} f(t)}{t-m_{\pi}^{2}}
$$

- The \wedge-dependence of this integral simply reflects the uncertainty due to higher-order effects from the expansion

Introducing a cutoff

- The second integral generates an infinite series of terms, but they are analytic, and therefore absorbable (in principle) into the low-energy coefficients.
- Since we are working to chiral order m_{π}^{3}, we only have a finite number of low-energy coefficients. But the terms from the second integral should be comparable to other higher-order terms neglected.
- Therefore, we can drop the second integral, and have:

$$
f\left(m_{\pi}^{2}\right)=-\frac{1}{\pi} \int_{-\Lambda^{2}}^{0} \mathrm{~d} t \frac{\operatorname{Im} f(t)}{t-m_{\pi}^{2}}
$$

- The Λ-dependence of this integral simply reflects the uncertainty due to higher-order effects from the expansion.

Introducing a cutoff

- We would like to use this FRR dispersion relation to compare results from heavy-baryon and non-heavy-baryon chiral perturbation theory ($\mathrm{HB} \chi \mathrm{PT}$ vs. $\mathrm{B} \chi \mathrm{PT}$).
- By imposing the cutoff, $\wedge \sim 1 \mathrm{GeV}$, we can investigate the convergence properties of the chiral expansion in m_{π}^{2}, without computing the higher order terms (often done in the FRR literature)
- If there is a significant deviation between $H B \chi P T$ and $B \chi P T$ for $\Lambda \ll 1 \mathrm{GeV}$, (at chiral finite order), the two expansions cannot be reconciled in a 'natural' way- i.e. higher-order terms must become unnaturally large in order to reconcile them.
- We shall examine the situation for several specific examples: the nucleon mass, anomalous magnetic moment, and the proton maonetic nolarizabilitv: and for each one obtain a different picture.

Introducing a cutoff

- We would like to use this FRR dispersion relation to compare results from heavy-baryon and non-heavy-baryon chiral perturbation theory ($\mathrm{HB} \chi \mathrm{PT}$ vs. $\mathrm{B} \chi \mathrm{PT}$).
- By imposing the cutoff, $\Lambda \sim 1 \mathrm{GeV}$, we can investigate the convergence properties of the chiral expansion in m_{π}^{2}, without computing the higher order terms (often done in the FRR literature).
- If there is a significant deviation between HBХPT and BХPT for $\Lambda \ll 1 \mathrm{GeV}$, (at chiral finite order), the two expansions cannot be reconciled in a 'natural' way-i.e. higher-order terms must become unnaturally large in order to reconcile them.
- We shall examine the situation for several specific examples: the nucleon mass, anomalous magnetic moment, and the proton and for each one obtain a different picture.

Introducing a cutoff

- We would like to use this FRR dispersion relation to compare results from heavy-baryon and non-heavy-baryon chiral perturbation theory ($\mathrm{HB} \chi \mathrm{PT}$ vs. $\mathrm{B} \chi \mathrm{PT}$).
- By imposing the cutoff, $\Lambda \sim 1 \mathrm{GeV}$, we can investigate the convergence properties of the chiral expansion in m_{π}^{2}, without computing the higher order terms (often done in the FRR literature).
- If there is a significant deviation between $\mathrm{HB} \chi \mathrm{PT}$ and $\mathrm{B} \chi \mathrm{PT}$ for $\Lambda \ll 1 \mathrm{GeV}$, (at chiral finite order), the two expansions cannot be reconciled in a 'natural' way-i.e. higher-order terms must become unnaturally large in order to reconcile them.
- We shall examine the situation for several specific examples: the nucleon mass, anomalous magnetic moment, and the proton and for each one ohtain a different nict ure

Introducing a cutoff

- We would like to use this FRR dispersion relation to compare results from heavy-baryon and non-heavy-baryon chiral perturbation theory ($\mathrm{HB} \chi \mathrm{PT}$ vs. $\mathrm{B} \chi \mathrm{PT}$).
- By imposing the cutoff, $\Lambda \sim 1 \mathrm{GeV}$, we can investigate the convergence properties of the chiral expansion in m_{π}^{2}, without computing the higher order terms (often done in the FRR literature).
- If there is a significant deviation between $\mathrm{HB} \chi \mathrm{PT}$ and $\mathrm{B} \chi \mathrm{PT}$ for $\Lambda \ll 1 \mathrm{GeV}$, (at chiral finite order), the two expansions cannot be reconciled in a 'natural' way-i.e. higher-order terms must become unnaturally large in order to reconcile them.
- We shall examine the situation for several specific examples: the nucleon mass, anomalous magnetic moment, and the proton magnetic polarizability; and for each one obtain a different picture.

Baryon chiral perturbation theory

Properties at $\mathcal{O}\left(m_{\pi}^{3}\right)$: nucleon mass

- Recall the chiral expansion formula for the nucleon mass M_{N} :

- In HB H T, we had

- In B χ PT, one obtains the following formula from the covariant integral result (for physical nucleon mass scale $\hat{M}_{N} \simeq 939 \mathrm{MeV}$)

Properties at $\mathcal{O}\left(m_{\pi}^{3}\right)$: nucleon mass

- Recall the chiral expansion formula for the nucleon mass M_{N} :

$$
M_{N}^{\mathrm{FRR}}=\stackrel{\circ}{M}_{N}+c_{2} m_{\pi}^{2}-\frac{1}{\pi} \int_{-\Lambda^{2}}^{0} \mathrm{~d} t \frac{\operatorname{Im} M_{N}(t)}{t-m_{\pi}^{2}}\left(\frac{m_{\pi}^{2}}{t}\right)^{2}
$$

- In $\mathrm{HB} \chi$ PT, we had:

- In B χ PT, one obtains the following formula from the covariant integral result (for physical nucleon mass scale $\hat{M}_{N} \simeq 939 \mathrm{MeV}$)

Properties at $\mathcal{O}\left(m_{\pi}^{3}\right)$: nucleon mass

- Recall the chiral expansion formula for the nucleon mass M_{N} :

$$
M_{N}^{\mathrm{FRR}}=\stackrel{\circ}{M}_{N}+c_{2} m_{\pi}^{2}-\frac{1}{\pi} \int_{-\Lambda^{2}}^{0} \mathrm{~d} t \frac{\operatorname{Im} M_{N}(t)}{t-m_{\pi}^{2}}\left(\frac{m_{\pi}^{2}}{t}\right)^{2}
$$

- In $\mathrm{HB} \chi \mathrm{PT}$, we had:
- In $\mathrm{B} \chi \mathrm{PT}$, one obtains the following formula from the covariant integral result (for physical nucleon mass scale $\hat{M}_{N} \simeq 939 \mathrm{MeV}$)

Properties at $\mathcal{O}\left(m_{\pi}^{3}\right)$: nucleon mass

- Recall the chiral expansion formula for the nucleon mass M_{N} :

$$
M_{N}^{\mathrm{FRR}}=\stackrel{\circ}{M}_{N}+c_{2} m_{\pi}^{2}-\frac{1}{\pi} \int_{-\Lambda^{2}}^{0} \mathrm{~d} t \frac{\operatorname{Im} M_{N}(t)}{t-m_{\pi}^{2}}\left(\frac{m_{\pi}^{2}}{t}\right)^{2}
$$

- In HB χ PT, we had:

$$
\operatorname{Im} M_{N}(t) \stackrel{\mathrm{HB}}{=} \operatorname{Im}\left\{\chi t^{3 / 2}\right\}=\chi t \sqrt{-t} \theta(-t) .
$$

- In $\mathrm{B} \chi \mathrm{PT}$, one obtains the following formula from the covariant integral result (for physical nucleon mass scale $\hat{M}_{N} \simeq 939 \mathrm{MeV}$)

Properties at $\mathcal{O}\left(m_{\pi}^{3}\right)$: nucleon mass

- Recall the chiral expansion formula for the nucleon mass M_{N} :

$$
M_{N}^{\mathrm{FRR}}=\stackrel{\circ}{M}_{N}+c_{2} m_{\pi}^{2}-\frac{1}{\pi} \int_{-\Lambda^{2}}^{0} \mathrm{~d} t \frac{\operatorname{Im} M_{N}(t)}{t-m_{\pi}^{2}}\left(\frac{m_{\pi}^{2}}{t}\right)^{2}
$$

- In HB χ PT, we had:

$$
\operatorname{Im} M_{N}(t) \stackrel{\mathrm{HB}}{=} \operatorname{Im}\left\{\chi t^{3 / 2}\right\}=\chi t \sqrt{-t} \theta(-t) .
$$

- In $\mathrm{B} \chi \mathrm{PT}$, one obtains the following formula from the covariant integral result (for physical nucleon mass scale $\hat{M}_{N} \simeq 939 \mathrm{MeV}$):

Properties at $\mathcal{O}\left(m_{\pi}^{3}\right)$: nucleon mass

- Recall the chiral expansion formula for the nucleon mass M_{N} :

$$
M_{N}^{\mathrm{FRR}}=\stackrel{\circ}{M}_{N}+c_{2} m_{\pi}^{2}-\frac{1}{\pi} \int_{-\Lambda^{2}}^{0} \mathrm{~d} t \frac{\operatorname{Im} M_{N}(t)}{t-m_{\pi}^{2}}\left(\frac{m_{\pi}^{2}}{t}\right)^{2}
$$

- In HB χ PT, we had:

$$
\operatorname{Im} M_{N}(t) \stackrel{\mathrm{HB}}{=} \operatorname{Im}\left\{\chi t^{3 / 2}\right\}=\chi t \sqrt{-t} \theta(-t) .
$$

- In $\mathrm{B} \chi \mathrm{PT}$, one obtains the following formula from the covariant integral result (for physical nucleon mass scale $\hat{M}_{N} \simeq 939 \mathrm{MeV}$):

$$
\operatorname{Im} M_{N}(t) \stackrel{B}{=}-\chi t\left(\frac{1}{2} \frac{t}{\hat{M}_{N}}+\sqrt{\frac{1}{4} \frac{t^{2}}{\hat{M}_{N}^{2}}-t}\right) \theta(-t)
$$

Properties at $\mathcal{O}\left(m_{\pi}^{3}\right)$: nucleon mass

- By computing the FRR dispersion relation, the following chiral expansions are be obtained:

Properties at $\mathcal{O}\left(m_{\pi}^{3}\right)$: nucleon mass

- By computing the FRR dispersion relation, the following chiral expansions are be obtained:
$M_{N}^{\mathrm{FRR}} \stackrel{\mathrm{HB}}{=} \stackrel{\circ}{M}_{N}+c_{2} m_{\pi}^{2}+\chi \frac{2}{\pi}\left\{m_{\pi}^{3} \arctan \frac{\Lambda}{m_{\pi}}-\frac{\Lambda^{3}}{3}-\Lambda m_{\pi}^{2}\right\}$.

Properties at $\mathcal{O}\left(m_{\pi}^{3}\right)$: nucleon mass

- By computing the FRR dispersion relation, the following chiral expansions are be obtained:

$$
M_{N}^{\mathrm{FRR}} \stackrel{\mathrm{HB}}{=}{ }_{M}{ }_{N}+c_{2} m_{\pi}^{2}+\chi \frac{2}{\pi}\left\{m_{\pi}^{3} \arctan \frac{\Lambda}{m_{\pi}}-\frac{\Lambda^{3}}{3}-\Lambda m_{\pi}^{2}\right\} .
$$

$$
M_{N}^{\mathrm{FRR}} \stackrel{\mathrm{~B}}{=} \stackrel{\circ}{M}_{N}+c_{2} m_{\pi}^{2}+\frac{\chi m_{\pi}^{4}}{2 \pi \hat{M}_{N}}\left\{2 \sqrt{\frac{4 \hat{M}_{N}^{2}}{m_{\pi}^{2}}-1} \arctan \left(\frac{\Lambda}{m_{\pi}} \sqrt{\frac{4 \hat{M}_{N}^{2}-m_{\pi}^{2}}{4 \hat{M}_{N}^{2}+\Lambda^{2}}}\right)\right.
$$

$$
\left.+2 \operatorname{arcsinh} \frac{\Lambda}{2 \hat{M}_{N}}+\log \frac{m_{\pi}^{2}}{m_{\pi}^{2}+\Lambda^{2}}\right\}
$$

Dependence on the cutoff \wedge

Figure: The \wedge-dependence of leading-order loop contributions to the nucleon mass, $M_{N}^{(3)} \equiv \tilde{\Sigma}_{\pi N}$, calculated in $\mathrm{HB} \chi \mathrm{PT}$ (blue dashed curves) and $\mathrm{B} \chi \mathrm{PT}$ (red solid curves) at $m_{\pi}^{2}=m_{\pi, \text { phys }}^{2}$.

Properties at $\mathcal{O}\left(m_{\pi}^{3}\right)$: nucleon mass

- The HB χ PT formula can be obtained from the $\mathrm{B} \chi$ PT by taking the heavy-baryon limit: $\hat{M}_{N} \rightarrow \infty$.
- We will find that, for all our examples of f, the HBXPT formulae contain the term:

- n (the number of subtractions) specifies the leading nonanalytic term (in m_{π}^{2})
- The power index n will help us classify the 'naturalness' of the heavy-baryon expansion

Properties at $\mathcal{O}\left(m_{\pi}^{3}\right)$: nucleon mass

- The HB χ PT formula can be obtained from the B χ PT by taking the heavy-baryon limit: $\hat{M}_{N} \rightarrow \infty$.
- We will find that, for all our examples of f, the $\mathrm{HB} \chi$ PT formulae contain the term:

- n (the number of subtractions) specifies the leading nonanalytic term (in m_{π}^{2})
- The power index n will help us classify the 'naturalness' of the heavy-baryon expansion

Properties at $\mathcal{O}\left(m_{\pi}^{3}\right)$: nucleon mass

- The $\mathrm{HB} \chi$ PT formula can be obtained from the $\mathrm{B} \chi$ PT by taking the heavy-baryon limit: $\hat{M}_{N} \rightarrow \infty$.
- We will find that, for all our examples of f, the $\mathrm{HB} \chi$ PT formulae contain the term:

$$
\tilde{\Sigma}_{f} \mathrm{HB}\left(m_{\pi}^{2} ; \Lambda\right)=-2 \chi m_{\pi}^{2 n-1} \arctan \frac{\Lambda}{m_{\pi}}
$$

- n (the number of subtractions) specifies the leading nonanalytic $\operatorname{term}\left(\right.$ in $\left.m_{\pi}^{2}\right)$.
- The power index n will help us classify the 'naturalness' of the heavy-baryon expansion

Properties at $\mathcal{O}\left(m_{\pi}^{3}\right)$: nucleon mass

- The HB χ PT formula can be obtained from the $\mathrm{B} \chi$ PT by taking the heavy-baryon limit: $\hat{M}_{N} \rightarrow \infty$.
- We will find that, for all our examples of f, the $\mathrm{HB} \chi$ PT formulae contain the term:

$$
\tilde{\Sigma}_{f} \mathrm{HB}\left(m_{\pi}^{2} ; \wedge\right)=-2 \chi m_{\pi}^{2 n-1} \arctan \frac{\Lambda}{m_{\pi}} .
$$

- n (the number of subtractions) specifies the leading nonanalytic term (in m_{π}^{2}).
- The power index n will help us classify the 'naturalness' of the heavy-baryon expansion.

Properties at $\mathcal{O}\left(m_{\pi}^{3}\right)$: nucleon mass

- The HB χ PT formula can be obtained from the $\mathrm{B} \chi$ PT by taking the heavy-baryon limit: $\hat{M}_{N} \rightarrow \infty$.
- We will find that, for all our examples of f, the $\mathrm{HB} \chi$ PT formulae contain the term:

$$
\tilde{\Sigma}_{f} \mathrm{HB}\left(m_{\pi}^{2} ; \wedge\right)=-2 \chi m_{\pi}^{2 n-1} \arctan \frac{\Lambda}{m_{\pi}} .
$$

- n (the number of subtractions) specifies the leading nonanalytic term (in m_{π}^{2}).
- The power index n will help us classify the 'naturalness' of the heavy-baryon expansion.

Properties at $\mathcal{O}\left(m_{\pi}^{3}\right)$: AMMs

- A similar treatment follows for the anomalous magnetic moment (AMM), κ, of the proton and neutron.
- The finite-size behaviour of a hadron (pion-cloud corrections) leads to an anomalous component, κ, to its magnetic moment (in addition to its Dirac moment)
- The leading-order contribution to the AMM is a 1-pion loop with minimal insertion of one photon.

- The imaginary narts of the AMMs in HB XPT are:

- The leading-order nonanalytic term is $\sim m_{\pi}$: lower than for the nucleon mass. Thus, only one subtraction is needed in the dispersion relation (i.e. $n=1$).

Properties at $\mathcal{O}\left(m_{\pi}^{3}\right)$: AMMs

- A similar treatment follows for the anomalous magnetic moment (AMM), κ, of the proton and neutron.
- The finite-size behaviour of a hadron (pion-cloud corrections) leads to an anomalous component, κ, to its magnetic moment (in addition to its Dirac moment).
- The leading-order contribution to the AMM is a 1-pion loop with minimal insertion of one photon
- The imaginary narts of the AMMs in HB XPT are:

- The leading-order nonanalytic term is $\sim m_{\pi}$: lower than for the nucleon mass. Thus, only one subtraction is needed in the dispersion relation

Properties at $\mathcal{O}\left(m_{\pi}^{3}\right)$: AMMs

- A similar treatment follows for the anomalous magnetic moment (AMM), κ, of the proton and neutron.
- The finite-size behaviour of a hadron (pion-cloud corrections) leads to an anomalous component, κ, to its magnetic moment (in addition to its Dirac moment).
- The leading-order contribution to the AMM is a 1-pion loop with minimal insertion of one photon.
- The imaginary parts of the AMMs in HBХPT are:

- The leading-order nonanalytic term is $\sim m_{\pi}$: lower than for the nucleon mass. Thus, only one subtraction is needed in the dispersion relation

Properties at $\mathcal{O}\left(m_{\pi}^{3}\right)$: AMMs

- A similar treatment follows for the anomalous magnetic moment (AMM), κ, of the proton and neutron.
- The finite-size behaviour of a hadron (pion-cloud corrections) leads to an anomalous component, κ, to its magnetic moment (in addition to its Dirac moment).
- The leading-order contribution to the AMM is a 1-pion loop with minimal insertion of one photon.
- The imaginary parts of the AMMs in $\mathrm{HB} \chi$ PT are:

- The leading-order nonanalytic term is $\sim m_{\pi}$: lower than for the nucleon mass. Thus, only one subtraction is needed in the dispersion relation

Properties at $\mathcal{O}\left(m_{\pi}^{3}\right)$: AMMs

- A similar treatment follows for the anomalous magnetic moment (AMM), κ, of the proton and neutron.
- The finite-size behaviour of a hadron (pion-cloud corrections) leads to an anomalous component, κ, to its magnetic moment (in addition to its Dirac moment).
- The leading-order contribution to the AMM is a 1-pion loop with minimal insertion of one photon.
- The imaginary parts of the AMMs in $\mathrm{HB} \chi$ PT are:

$$
\operatorname{Im} \kappa_{p}(t) \stackrel{\mathrm{HB}}{=}-\frac{4}{3} \chi \hat{M}_{N} \sqrt{-t} \theta(-t)=-\operatorname{Im} \kappa_{n}(t)
$$

- The leading-order nonanalytic term is $\sim m_{\pi}$: lower than for the nucleon mass. Thus, only one subtraction is needed in the dispersion relation (i.e

Properties at $\mathcal{O}\left(m_{\pi}^{3}\right)$: AMMs

- A similar treatment follows for the anomalous magnetic moment (AMM), κ, of the proton and neutron.
- The finite-size behaviour of a hadron (pion-cloud corrections) leads to an anomalous component, κ, to its magnetic moment (in addition to its Dirac moment).
- The leading-order contribution to the AMM is a 1-pion loop with minimal insertion of one photon.
- The imaginary parts of the AMMs in $\mathrm{HB} \chi$ PT are:

$$
\operatorname{Im} \kappa_{p}(t) \stackrel{H B}{=}-\frac{4}{3} \chi \hat{M}_{N} \sqrt{-t} \theta(-t)=-\operatorname{Im} \kappa_{n}(t) .
$$

- The leading-order nonanalytic term is $\sim m_{\pi}$: lower than for the nucleon mass. Thus, only one subtraction is needed in the dispersion relation (i.e. $n=1$).

Properties at $\mathcal{O}\left(m_{\pi}^{3}\right)$: AMMs

- Chiral formulae corresponding to $\mathrm{HB} \chi$ PT and $\mathrm{B} \chi$ PT may again be obtained by evaluating the dispersion relation:

- In lattice QCD, the isovector nucleon $(p-n)$ is used, so that calculations involving all-to-all propagators cancel.
- The isovector nucleon AMM formula may also include a term linear in m_{π}^{2} if desired (for fitting)

$$
\kappa_{\text {isov }}\left(m_{\pi}^{2} \cdot \Lambda^{2}\right)=\kappa_{p}\left(m_{\pi}^{2} ; \Lambda^{2}\right)-\kappa_{n}\left(m_{\pi}^{2} ; \Lambda^{2}\right)+a_{2} m_{\pi}^{2}
$$

Properties at $\mathcal{O}\left(m_{\pi}^{3}\right)$: AMMs

- Chiral formulae corresponding to $\mathrm{HB} \chi$ PT and $\mathrm{B} \chi$ PT may again be obtained by evaluating the dispersion relation:

$$
\kappa_{p, n}^{\mathrm{FRR}}=\stackrel{\circ}{\kappa}_{p, n}-\frac{1}{\pi} \int_{-\Lambda^{2}}^{0} \mathrm{~d} t \frac{\operatorname{Im} \kappa_{p, n}(t)}{t-m_{\pi}^{2}}\left(\frac{m_{\pi}^{2}}{t}\right)^{1}
$$

- In lattice QCD, the isovector nucleon $(p-n)$ is used, so that calculations involving all-to-all propagators cancel.
- The isovector nucleon AMM formula may also include a term linear in m_{π}^{2} if desired (for fitting)

$$
\kappa_{\mathrm{isov}}\left(m_{\pi}^{2} ; \Lambda^{2}\right)=\kappa_{p}\left(m_{\pi}^{2} ; \Lambda^{2}\right)-\kappa_{n}\left(m_{\pi}^{2} ; \Lambda^{2}\right)+a_{2} m_{\pi}^{2}
$$

Properties at $\mathcal{O}\left(m_{\pi}^{3}\right)$: AMMs

- Chiral formulae corresponding to $\mathrm{HB} \chi$ PT and $\mathrm{B} \chi$ PT may again be obtained by evaluating the dispersion relation:

$$
\kappa_{p, n}^{\mathrm{FRR}}=\stackrel{\circ}{\kappa}_{p, n}-\frac{1}{\pi} \int_{-\Lambda^{2}}^{0} \mathrm{~d} t \frac{\operatorname{Im} \kappa_{p, n}(t)}{t-m_{\pi}^{2}}\left(\frac{m_{\pi}^{2}}{t}\right)^{1}
$$

- In lattice QCD, the isovector nucleon $(p-n)$ is used, so that calculations involving all-to-all propagators cancel.
- The isovector nucleon AMM formula may also include a term linear in m_{π}^{2} if desired (for fitting):

$$
\kappa_{\text {isov }}\left(m_{\pi}^{2} ; \wedge^{2}\right)=\kappa_{p}\left(m_{\pi}^{2} ; \Lambda^{2}\right)-k_{n}\left(m_{\pi}^{2} ; \Lambda^{2}\right)+a_{2} m_{\pi}^{2}
$$

Properties at $\mathcal{O}\left(m_{\pi}^{3}\right)$: AMMs

- Chiral formulae corresponding to $\mathrm{HB} \chi$ PT and $\mathrm{B} \chi$ PT may again be obtained by evaluating the dispersion relation:

$$
\kappa_{p, n}^{\mathrm{FRR}}=\stackrel{\circ}{\kappa}_{p, n}-\frac{1}{\pi} \int_{-\Lambda^{2}}^{0} \mathrm{~d} t \frac{\operatorname{Im} \kappa_{p, n}(t)}{t-m_{\pi}^{2}}\left(\frac{m_{\pi}^{2}}{t}\right)^{1}
$$

- In lattice QCD, the isovector nucleon $(p-n)$ is used, so that calculations involving all-to-all propagators cancel.
- The isovector nucleon AMM formula may also include a term linear in m_{π}^{2} if desired (for fitting):

Properties at $\mathcal{O}\left(m_{\pi}^{3}\right)$: AMMs

- Chiral formulae corresponding to $\mathrm{HB} \chi$ PT and $\mathrm{B} \chi$ PT may again be obtained by evaluating the dispersion relation:

$$
\kappa_{p, n}^{\mathrm{FRR}}=\stackrel{\circ}{\kappa}_{p, n}-\frac{1}{\pi} \int_{-\Lambda^{2}}^{0} \mathrm{~d} t \frac{\operatorname{Im} \kappa_{p, n}(t)}{t-m_{\pi}^{2}}\left(\frac{m_{\pi}^{2}}{t}\right)^{1}
$$

- In lattice QCD, the isovector nucleon $(p-n)$ is used, so that calculations involving all-to-all propagators cancel.
- The isovector nucleon AMM formula may also include a term linear in m_{π}^{2} if desired (for fitting):

$$
\kappa_{\mathrm{isov}}\left(m_{\pi}^{2} ; \Lambda^{2}\right)=\kappa_{p}\left(m_{\pi}^{2} ; \Lambda^{2}\right)-\kappa_{n}\left(m_{\pi}^{2} ; \Lambda^{2}\right)+a_{2} m_{\pi}^{2}
$$

Dependence on the cutoff \wedge

Figure: The Λ-dependence of leading-order loop contributions to the isovector nucleon AMM, calculated in $\mathrm{HB} \chi$ PT (blue dashed curves) and $\mathrm{B} \chi$ PT (red solid curves) at $m_{\pi}^{2}=m_{\pi, \text { phys }}^{2}$.

Properties at $\mathcal{O}\left(m_{\pi}^{3}\right)$: polarizabilities

- We shall also consider the magnetic polarizability, β_{p}, of the proton.
- Its leading-order contribution is a 1-pion loop with minimal insertion of two photons.
- The imaginary part of the polarizability in HBХPT is:

- Here, the leading-order nonanalytic term is $\sim 1 / m_{\pi}$. No subtractions are required. Furthermore, this negative power of m_{π}^{2} will have consequences for the heavy-baryon expansion

Properties at $\mathcal{O}\left(m_{\pi}^{3}\right)$: polarizabilities

- We shall also consider the magnetic polarizability, β_{p}, of the proton.
- Its leading-order contribution is a 1-pion loop with minimal insertion of two photons.
- The imaginary part of the polarizability in HBXPT is:

- Here, the leading-order nonanalytic term is $\sim 1 / m_{\pi}$. No subtractions are required. Furthermore, this negative power of m_{π}^{2} will have consequences for the heavy-baryon expansion

Properties at $\mathcal{O}\left(m_{\pi}^{3}\right)$: polarizabilities

- We shall also consider the magnetic polarizability, β_{p}, of the proton.
- Its leading-order contribution is a 1-pion loop with minimal insertion of two photons.
- The imaginary part of the polarizability in HB χ PT is:

- Here, the leading-order nonanalytic term is $\sim 1 / m_{\pi}$. No subtractions are required. Furthermore, this negative power of m_{π}^{2} will have consequences for the heavy-baryon expansion.

Properties at $\mathcal{O}\left(m_{\pi}^{3}\right)$: polarizabilities

- We shall also consider the magnetic polarizability, β_{p}, of the proton.
- Its leading-order contribution is a 1-pion loop with minimal insertion of two photons.
- The imaginary part of the polarizability in $\mathrm{HB} \chi \mathrm{PT}$ is:

$$
\operatorname{Im} \beta_{p}(t) \stackrel{\mathrm{HB}}{=}-\frac{\alpha}{18} \chi \frac{1}{\sqrt{-t}} \theta(-t) \quad(\alpha \simeq 1 / 137)
$$

- Here, the leading-order nonanalytic term is $\sim 1 / m_{\pi}$. No subtractions are required. Furthermore, this negative power of m_{π}^{2} will have consequences for the heavy-baryon expansion.

Properties at $\mathcal{O}\left(m_{\pi}^{3}\right)$: polarizabilities

- We shall also consider the magnetic polarizability, β_{p}, of the proton.
- Its leading-order contribution is a 1-pion loop with minimal insertion of two photons.
- The imaginary part of the polarizability in $\mathrm{HB} \chi$ PT is:

$$
\operatorname{Im} \beta_{p}(t) \stackrel{\mathrm{HB}}{=}-\frac{\alpha}{18} \chi \frac{1}{\sqrt{-t}} \theta(-t) \quad(\alpha \simeq 1 / 137)
$$

- Here, the leading-order nonanalytic term is $\sim 1 / m_{\pi}$. No subtractions are required. Furthermore, this negative power of m_{π}^{2} will have consequences for the heavy-baryon expansion.

Dependence on the cutoff \wedge

Figure: The \wedge-dependence of leading-order loop contributions to the proton magnetic polarizability, calculated in $\mathrm{HB} \chi$ PT (blue dashed curves) and $\mathrm{B} \chi \mathrm{PT}$ (red solid curves) at $m_{\pi}^{2}=m_{\pi, \text { phys }}^{2}$.

Dependence on the cutoff \wedge

- The residual Λ-dependence in HB χ PT falls off as $1 / \Lambda$ in all examples, whereas in $\mathrm{B} \chi \mathrm{PT}$, it behaves as $1 / \Lambda^{2}$ for M_{N}, and $1 / \Lambda^{4}$ for the AMMs and polarizability.
- The stronger dependence on Λ indicates a greater impact from the unknown high-energy physics to be renormalized.
- Note, however, that the HB HPT and B χ PT results are identical in the limit $\Lambda \rightarrow 0$ (guaranteed)

Dependence on the cutoff \wedge

- The residual \wedge-dependence in HB χ PT falls off as $1 / \Lambda$ in all examples, whereas in $\mathrm{B} \chi \mathrm{PT}$, it behaves as $1 / \Lambda^{2}$ for M_{N}, and $1 / \Lambda^{4}$ for the AMMs and polarizability.
- The stronger dependence on Λ indicates a greater impact from the unknown high-energy physics to be renormalized.
- Note, however, that the HB PT and B χ PT results are identical in the limit $\Lambda \rightarrow 0$ (guaranteed)

Dependence on the cutoff \wedge

- The residual \wedge-dependence in HB χ PT falls off as $1 / \Lambda$ in all examples, whereas in $\mathrm{B} \chi \mathrm{PT}$, it behaves as $1 / \Lambda^{2}$ for M_{N}, and $1 / \Lambda^{4}$ for the AMMs and polarizability.
- The stronger dependence on Λ indicates a greater impact from the unknown high-energy physics to be renormalized.
- Note, however, that the HB χ PT and $\mathrm{B} \chi$ PT results are identical in the limit $\Lambda \rightarrow 0$ (guaranteed).

Dependence on the cutoff \wedge

- In the case of the magnetic polarizability of the proton, there is significant difference in the results, even at $\Lambda \sim m_{\pi \text {,physical }} \ll 1$ GeV , and the results are the opposite sign!
- This is because the BХPT formula contains contributions $\sim-1 / \hat{M}_{N}$, which are largely underestimated in $\mathrm{HB} \chi \mathrm{PT}$.
- Recalling the formula

the power index, n, allows us to classify the naturalness of the heavy-baryon expansion. The lower the value of n, the greater the difficulty for $\mathrm{HB} \chi \mathrm{PT}$ to describe a quantity.
- The fact that $n=0$, i.e. negative powers of m_{π}, indicates a dramatic failure of $\mathrm{HB} \times \mathrm{PT}$. as observed

Dependence on the cutoff \wedge

- In the case of the magnetic polarizability of the proton, there is significant difference in the results, even at $\Lambda \sim m_{\pi \text {,physical }} \ll 1$ GeV , and the results are the opposite sign!
- This is because the B χ PT formula contains contributions $\sim-1 / \hat{M}_{N}$, which are largely underestimated in $\mathrm{HB} \chi \mathrm{PT}$.
- Recalling the formula

the power index, n, allows us to classify the naturalness of the heavy-baryon expansion. The lower the value of n, the greater the difficulty for $\mathrm{HB} \chi \mathrm{PT}$ to describe a quantity.
- The fact that $n=0$, i.e. negative powers of m_{π}, indicates a dramatic failure of $\mathrm{HB} \times \mathrm{PT}$, as observed

Dependence on the cutoff \wedge

- In the case of the magnetic polarizability of the proton, there is significant difference in the results, even at $\Lambda \sim m_{\pi \text {,physical }} \ll 1$ GeV , and the results are the opposite sign!
- This is because the B χ PT formula contains contributions $\sim-1 / \hat{M}_{N}$, which are largely underestimated in $\mathrm{HB} \chi \mathrm{PT}$.
- Recalling the formula:

Dependence on the cutoff Λ

- In the case of the magnetic polarizability of the proton, there is significant difference in the results, even at $\Lambda \sim m_{\pi \text {,physical }} \ll 1$ GeV , and the results are the opposite sign!
- This is because the B χ PT formula contains contributions $\sim-1 / \hat{M}_{N}$, which are largely underestimated in $\mathrm{HB} \chi \mathrm{PT}$.
- Recalling the formula:

$$
\tilde{\Sigma}_{f}^{\mathrm{HB}}\left(m_{\pi}^{2} ; \Lambda\right)=-2 \chi m_{\pi}^{2 n-1} \arctan \frac{\Lambda}{m_{\pi}},
$$

the power index, n, allows us to classify the naturalness of the heavy-baryon expansion. The lower the value of n, the greater the difficulty for $\mathrm{HB} \chi$ PT to describe a quantity.

- The fact that $n=0$, i.e. negative powers of m_{π}, indicates a dramatic failure of $\mathrm{HB} \times \mathrm{PT}$, as observed.

Dependence on the cutoff \wedge

- In the case of the magnetic polarizability of the proton, there is significant difference in the results, even at $\Lambda \sim m_{\pi \text {,physical }} \ll 1$ GeV , and the results are the opposite sign!
- This is because the B χ PT formula contains contributions $\sim-1 / \hat{M}_{N}$, which are largely underestimated in $\mathrm{HB} \chi \mathrm{PT}$.
- Recalling the formula:

$$
\tilde{\Sigma}_{f}^{\mathrm{HB}}\left(m_{\pi}^{2} ; \Lambda\right)=-2 \chi m_{\pi}^{2 n-1} \arctan \frac{\Lambda}{m_{\pi}},
$$

the power index, n, allows us to classify the naturalness of the heavy-baryon expansion. The lower the value of n, the greater the difficulty for $\mathrm{HB} \chi$ PT to describe a quantity.

- The fact that $n=0$, i.e. negative powers of m_{π}, indicates a

Dependence on the cutoff \wedge

- In the case of the magnetic polarizability of the proton, there is significant difference in the results, even at $\Lambda \sim m_{\pi \text {,physical }} \ll 1$ GeV , and the results are the opposite sign!
- This is because the B χ PT formula contains contributions $\sim-1 / \hat{M}_{N}$, which are largely underestimated in HB χ PT.
- Recalling the formula:

$$
\tilde{\Sigma}_{f}{ }^{\mathrm{HB}}\left(m_{\pi}^{2} ; \Lambda\right)=-2 \chi m_{\pi}^{2 n-1} \arctan \frac{\Lambda}{m_{\pi}},
$$

the power index, n, allows us to classify the naturalness of the heavy-baryon expansion. The lower the value of n, the greater the difficulty for $\mathrm{HB} \chi$ PT to describe a quantity.

- The fact that $n=0$, i.e. negative powers of m_{π}, indicates a dramatic failure of $\mathrm{HB} \chi \mathrm{PT}$, as observed.

Confronting the data: chiral extrapolation

Confronting the data: chiral extrapolation

Confronting the data

- The results of χ PT must be matched to an underlying theory.
- In the case of polarizabilities, there are no unknown parameters at leading order, so a χ PT result is a genuine prediction. But: there are currently no lattice results to use, and the experimental value is uncertain.
- For the nucleon mass, we don't expect much difference between HBxPT and BxPT near the physical pion mass, but the difference can be significant for larger pion masses.
- For the AMM, the leading-order nonanalytic term occurs at a lower order than for the nucleon mass, placing more importance on the chiral curvature.

Confronting the data

- The results of χ PT must be matched to an underlying theory.
- In the case of polarizabilities, there are no unknown parameters at leading order, so a $\chi \mathrm{PT}$ result is a genuine prediction.
But: there are currently no lattice results to use, and the
experimental value is uncertain.
- For the nucleon mass, we don't expect much difference between HB χ PT and B BPT near the physical pion mass, but the difference can be significant for larger pion masses.
- For the AMM , the leading-order nonanalytic term occurs at a lower order than for the nucleon mass, placing more importance on the chiral curvature.

Confronting the data

- The results of χ PT must be matched to an underlying theory.
- In the case of polarizabilities, there are no unknown parameters at leading order, so a $\chi \mathrm{PT}$ result is a genuine prediction. But: there are currently no lattice results to use, and the experimental value is uncertain.
- For the nucleon mass, we don't expect much difference between $H B \chi P T$ and $B \chi P T$ near the physical pion mass, but the difference can be significant for larger pion masses
- For the AMM, the leading-order nonanalytic term occurs at a lower order than for the nucleon mass, placing more importance on the chiral curvature

Confronting the data

- The results of $\chi \mathrm{PT}$ must be matched to an underlying theory.
- In the case of polarizabilities, there are no unknown parameters at leading order, so a χ PT result is a genuine prediction. But: there are currently no lattice results to use, and the experimental value is uncertain.
- For the nucleon mass, we don't expect much difference between $\mathrm{HB} \chi \mathrm{PT}$ and $\mathrm{B} \chi$ PT near the physical pion mass, but the difference can be significant for larger pion masses.
- For the AMM, the leading-order nonanalytic term occurs at a lower order than for the nucleon mass, placing more importance on the chiral curvature.

Confronting the data

- The results of χ PT must be matched to an underlying theory.
- In the case of polarizabilities, there are no unknown parameters at leading order, so a $\chi \mathrm{PT}$ result is a genuine prediction. But: there are currently no lattice results to use, and the experimental value is uncertain.
- For the nucleon mass, we don't expect much difference between $\mathrm{HB} \chi \mathrm{PT}$ and $\mathrm{B} \chi \mathrm{PT}$ near the physical pion mass, but the difference can be significant for larger pion masses.
- For the AMM, the leading-order nonanalytic term occurs at a lower order than for the nucleon mass, placing more importance on the chiral curvature.

M_{N} extrapolation- lattice QCD

Figure: Chiral extrapolations of the nucleon mass for $\mathrm{HB} \chi$ PT compared to $\mathrm{B} \chi \mathrm{PT}$ at $\Lambda=0.5 \mathrm{GeV}$. The extrapolation based on PACS-CS results, box size: 2.9 fm . Finite-volume effects are neglected.

M_{N} extrapolation- lattice QCD

Figure: Chiral extrapolations of the nucleon mass for $\mathrm{HB} \chi$ PT compared to $\mathrm{B} \chi \mathrm{PT}$ at $\Lambda=1.0 \mathrm{GeV}$. The extrapolation based on PACS-CS results, box size: 2.9 fm . Finite-volume effects are neglected.

M_{N} extrapolation- lattice QCD

Figure: Chiral extrapolations of the nucleon mass for $\mathrm{HB} \chi$ PT compared to $\mathrm{B} \chi \mathrm{PT}$ at $\Lambda=2.0 \mathrm{GeV}$. The extrapolation based on PACS-CS results, box size: 2.9 fm . Finite-volume effects are neglected.

M_{N} extrapolation- lattice QCD

Figure: Chiral extrapolations of the nucleon mass for $\mathrm{HB} \chi$ PT compared to $\mathrm{B} \chi$ PT at $\Lambda=0.5 \mathrm{GeV}$. The extrapolation based on JLQCD results, box size: 1.9 fm . Finite-volume effects are neglected.

M_{N} extrapolation- lattice QCD

Figure: Chiral extrapolations of the nucleon mass for $\mathrm{HB} \chi$ PT compared to $\mathrm{B} \chi$ PT at $\Lambda=1.0 \mathrm{GeV}$. The extrapolation based on JLQCD results, box size: 1.9 fm . Finite-volume effects are neglected.

M_{N} extrapolation- lattice QCD

Figure: Chiral extrapolations of the nucleon mass for $\mathrm{HB} \chi$ PT compared to $\mathrm{B} \chi$ PT at $\Lambda=2.0 \mathrm{GeV}$. The extrapolation based on JLQCD results, box size: 1.9 fm . Finite-volume effects are neglected.

M_{N} extrapolation- lattice QCD

- For small values of Λ, the chiral loops are suppressed, an almost-linear fit ensues, yielding a poor fit to the low pion-mass lattice results.
- For large values of \wedge, the HBХPT result struggles to fit the lattice results due to large curvature in the heavy pion-mass region.
- The best cutoff scale to use appears to be $\Lambda \simeq 1 \mathrm{GeV}$, in agreement with previous FRR studies.
- Overall, the $\mathrm{B} \chi$ PT result is less sensitive to changes in the cutoff scale, Λ, leading to a more stable fit.

M_{N} extrapolation- lattice QCD

- For small values of Λ, the chiral loops are suppressed, an almost-linear fit ensues, yielding a poor fit to the low pion-mass lattice results.
- For large values of Λ, the $\mathrm{HB} \chi$ PT result struggles to fit the lattice results due to large curvature in the heavy pion-mass region.
- The best cutoff scale to use appears to be $\wedge \simeq 1 \mathrm{GeV}$, in agreement with previous FRR studies.
- Overall, the BrPT result is less sensitive to changes in the cutoff scale, \wedge, leading to a more stable fit.

M_{N} extrapolation- lattice QCD

- For small values of Λ, the chiral loops are suppressed, an almost-linear fit ensues, yielding a poor fit to the low pion-mass lattice results.
- For large values of Λ, the $\mathrm{HB} \chi$ PT result struggles to fit the lattice results due to large curvature in the heavy pion-mass region.
- The best cutoff scale to use appears to be $\Lambda \simeq 1 \mathrm{GeV}$, in agreement with previous FRR studies.
- Overall, the BXPT result is less sensitive to changes in the cutoff scale, Λ, leading to a more stable fit.

M_{N} extrapolation- lattice QCD

- For small values of Λ, the chiral loops are suppressed, an almost-linear fit ensues, yielding a poor fit to the low pion-mass lattice results.
- For large values of Λ, the $\mathrm{HB} \chi$ PT result struggles to fit the lattice results due to large curvature in the heavy pion-mass region.
- The best cutoff scale to use appears to be $\Lambda \simeq 1 \mathrm{GeV}$, in agreement with previous FRR studies.
- Overall, the $\mathrm{B} \chi$ PT result is less sensitive to changes in the cutoff scale, Λ, leading to a more stable fit.

AMM extrapolation- lattice QCD

Figure: Chiral extrapolations of the isovector nucleon AMM for $\mathrm{HB} \chi$ PT compared to $\mathrm{B} \chi \mathrm{PT}$ at $\Lambda=0.5 \mathrm{GeV}$. The extrapolation based on QCDSF results, box size: $1.7-2.9 \mathrm{fm}$. Finite-volume effects are neglected.

AMM extrapolation- lattice QCD

Figure: Chiral extrapolations of the isovector nucleon AMM for $\mathrm{HB} \chi$ PT compared to $\mathrm{B} \chi \mathrm{PT}$ at $\Lambda=0.8 \mathrm{GeV}$. The extrapolation based on QCDSF results, box size: $1.7-2.9 \mathrm{fm}$. Finite-volume effects are neglected.

AMM extrapolation- lattice QCD

Figure: Chiral extrapolations of the isovector nucleon AMM for $\mathrm{HB} \chi$ PT compared to $\mathrm{B} \chi \mathrm{PT}$ at $\Lambda=1.0 \mathrm{GeV}$. The extrapolation based on QCDSF results, box size: $1.7-2.9 \mathrm{fm}$. Finite-volume effects are neglected.

AMM extrapolation- lattice QCD

- In the AMM extrapolation, we see larger chiral curvature than the case of M_{N}, because of its lower-order leading nonanalytic term $\left(\sim m_{\pi}\right)$.
- For this reason, the HBХPT extrapolation becomes unfavorable at values of Λ, with large curvature for $\Lambda \geqslant 1 \mathrm{GeV}$.
- Even with the inclusion of the linear ' a_{2} term', which plays the role of compensating for high-momentum contributions, the $\mathrm{B} \chi \mathrm{PT}$ result is much more stable to changes in ultraviolet behaviour.

AMM extrapolation- lattice QCD

- In the AMM extrapolation, we see larger chiral curvature than the case of M_{N}, because of its lower-order leading nonanalytic term $\left(\sim m_{\pi}\right)$.
- For this reason, the $\mathrm{HB} \chi$ PT extrapolation becomes unfavorable at large values of Λ, with large curvature for $\Lambda \gtrsim 1 \mathrm{GeV}$.
- Even with the inclusion of the linear 'a a_{2} term', which plays the role of compensating for high-momentum contributions, the $\mathrm{B} \chi \mathrm{PT}$ result is much more stable to changes in ultraviolet behaviour.

AMM extrapolation- lattice QCD

- In the AMM extrapolation, we see larger chiral curvature than the case of M_{N}, because of its lower-order leading nonanalytic term $\left(\sim m_{\pi}\right)$.
- For this reason, the $\mathrm{HB} \chi$ PT extrapolation becomes unfavorable at large values of Λ, with large curvature for $\Lambda \gtrsim 1 \mathrm{GeV}$.
- Even with the inclusion of the linear ' a_{2} term', which plays the role of compensating for high-momentum contributions, the B χ PT result is much more stable to changes in ultraviolet behaviour.

Conclusion

Conclusion

- We utilised a pion-mass dispersion relation to examine analytic properties of static quantities in chiral perturbation theory.
- We incorporated the useful properties of finite-range regularization into our chiral expansion formulae.
- W/e derived a relativistic improvement (B入PT) to our chiral formulae for the mass and anomalous magnetic moment of the nucleon, and the magnetic polarizability of the proton.
- We tested the now ByDT formulac by comparing their dependence on the ultraviolet cutoff, \wedge, with that of the heavy-baryon expansion (HB χ PT), using lattice $Q C D$ results. The $B \chi P T$ formulae produced more reliable chiral extrapolations.
- We discovered a possible method for determining when then heavy-baryon expansion becomes unnatural

Conclusion

- We utilised a pion-mass dispersion relation to examine analytic properties of static quantities in chiral perturbation theory.
- We incorporated the useful properties of finite-range regularization into our chiral expansion formulae.
- We derived a relativistic improvement (BХPT) to our chiral formulae for the mass and anomalous magnetic moment of the nucleon, and the magnetic polarizability of the proton
- We tested the new BXPT formulae by comparing their dependence on the ultraviolet cutoff, Λ, with that of the heavy-baryon expansion ($\mathrm{HB} \chi \mathrm{PT}$), using lattice QCD results. The $\mathrm{B} \chi \mathrm{PT}$ formulae produced more reliable chiral extrapolations.
- We discovered a possible method for determining when then heavy-baryon expansion becomes unnatural

Conclusion

- We utilised a pion-mass dispersion relation to examine analytic properties of static quantities in chiral perturbation theory.
- We incorporated the useful properties of finite-range regularization into our chiral expansion formulae.
- We derived a relativistic improvement (B χ PT) to our chiral formulae for the mass and anomalous magnetic moment of the nucleon, and the magnetic polarizability of the proton.
- We tested the new BXPT formulae by comparing their dependence on the ultraviolet cutoff, Λ, with that of the heavy-baryon expansion ($\mathrm{HB} \chi \mathrm{PT}$), using lattice QCD results. The $\mathrm{B} \chi \mathrm{PT}$ formulae produced more reliable chiral extrapolations.
- We discovered a possible method for determining when then heavy-baryon expansion becomes unnatural

Conclusion

- We utilised a pion-mass dispersion relation to examine analytic properties of static quantities in chiral perturbation theory.
- We incorporated the useful properties of finite-range regularization into our chiral expansion formulae.
- We derived a relativistic improvement $(\mathrm{B} \chi \mathrm{PT})$ to our chiral formulae for the mass and anomalous magnetic moment of the nucleon, and the magnetic polarizability of the proton.
- We tested the new B χ PT formulae by comparing their dependence on the ultraviolet cutoff, Λ, with that of the heavy-baryon expansion ($\mathrm{HB} \chi \mathrm{PT}$), using lattice QCD results. The $\mathrm{B} \chi \mathrm{PT}$ formulae produced more reliable chiral extrapolations.
- We discovered a possible method for determining when then heavy-baryon expansion becomes unnatural

Conclusion

- We utilised a pion-mass dispersion relation to examine analytic properties of static quantities in chiral perturbation theory.
- We incorporated the useful properties of finite-range regularization into our chiral expansion formulae.
- We derived a relativistic improvement $(\mathrm{B} \chi \mathrm{PT})$ to our chiral formulae for the mass and anomalous magnetic moment of the nucleon, and the magnetic polarizability of the proton.
- We tested the new B χ PT formulae by comparing their dependence on the ultraviolet cutoff, Λ, with that of the heavy-baryon expansion ($\mathrm{HB} \chi \mathrm{PT}$), using lattice QCD results. The $\mathrm{B} \chi \mathrm{PT}$ formulae produced more reliable chiral extrapolations.
- We discovered a possible method for determining when then heavy-baryon expansion becomes unnatural.

Helpful references

- Limitations of the heavy-baryon expansion: J. M. M. Hall and V. Pascalutsa, arXiv:1203.0724 [hep-ph].
- The pion-mass dispersion relation: T. Ledwig, V. Pascalutsa \& M. Vanderhaeghen, Phys.Lett. B690, 129 (2010), 1004.3449.
- 'Naturalness': H. Georgi, Nucl.Phys. B361, 339 (1991).
- The magnetic polarizability of the proton: V. Lensky and V. Pascalutsa, Eur.Phys.J. C65, 195 (2010), 0907.0451.
- Nucleon mass lattice QCD results:
- S. Aoki et al., (PACS-CS Collaboration), Phys.Rev. D79, 034503 (2009), 0807.1661.
- H. Ohki et al., Phys.Rev. D78, 054502 (2008), 0806.4744.
- AMM lattice QCD results: S. Collins, M. Gockeler, P. Hagler, R. Horsley, Y. Nakamura, J. Zanotti et al.,Phys.Rev. D84, 074507, (2011), 1106.3580.

Appendix

FRR B χ PT chiral formulae

- The relativistically-improved chiral formula for κ_{p} is:

$$
\begin{aligned}
\kappa_{p}^{\mathrm{FRR}} & {\stackrel{B}{=} \stackrel{\kappa}{k}_{p}} \\
& +\frac{2 \chi}{3 \pi} \hat{M}_{N}^{2}\left\{\frac{m_{\pi}\left(-8+22 \frac{m_{\pi}}{\frac{M_{N}^{2}}{2}}-6 \frac{m_{\pi}^{4}}{\hat{M}_{N}^{4}}\right)}{\hat{M}_{N} \sqrt{4-\frac{m_{\pi}^{2}}{\hat{M}_{N}^{2}}}} \arctan \left(\frac{\Lambda}{m_{\pi}} \sqrt{\frac{4 \hat{M}_{N}^{2}-m_{\pi}^{2}}{4 \hat{M}_{N}^{2}+\Lambda^{2}}}\right)\right. \\
& -\frac{m_{\pi}^{2}}{\hat{M}_{N}^{2}}\left(5-\frac{3 m_{\pi}^{2}}{\hat{M}_{N}^{2}}\right)\left[2 \operatorname{arcsinh} \frac{\Lambda}{2 \hat{M}_{N}}+\log \frac{m_{\pi}^{2}}{m_{\pi}^{2}+\Lambda^{2}}\right] \\
& \left.+\frac{3 m_{\pi}^{2} \Lambda^{2}}{\hat{M}_{N}^{4}}\left(1-\sqrt{1+\frac{4 \hat{M}_{N}^{2}}{\Lambda^{2}}}\right)\right\} .
\end{aligned}
$$

FRR B χ PT chiral formulae

- The relativistically-improved chiral formula for κ_{n} is:

$$
\begin{aligned}
\kappa_{n} & =\stackrel{\circ}{\kappa}_{n}+\frac{8 \chi}{3 \pi} \hat{M}_{N}^{2}\left\{\frac{m_{\pi}\left(2-\frac{m_{\pi}^{2}}{\hat{M}_{N}^{2}}\right)}{\hat{M}_{N}\left(4-\frac{m_{\pi}^{2}}{\hat{M}_{N}^{2}}\right)^{1 / 2}} \arctan \left(\frac{\Lambda}{m_{\pi}} \sqrt{\frac{4 \hat{M}_{N}^{2}-m_{\pi}^{2}}{4 \hat{M}_{N}^{2}+\Lambda^{2}}}\right)\right. \\
& \left.+\frac{m_{\pi}^{2}}{2 \hat{M}_{N}^{2}}\left[2 \operatorname{arcsinh} \frac{\Lambda}{2 \hat{M}_{N}}+\log \frac{m_{\pi}^{2}}{m_{\pi}^{2}+\Lambda^{2}}\right]\right\} .
\end{aligned}
$$

FRR B χ PT chiral formulae

$$
\left.\begin{array}{rl}
\beta_{p} & =\frac{2 \alpha \chi}{9 \pi}\left\{\frac{2\left(2-246 \frac{m_{\pi}^{2}}{\hat{M}_{N}^{2}}+471 \frac{m_{\pi}^{4}}{\hat{M}_{N}^{4}}-212 \frac{m_{\pi}^{6}}{\hat{M}_{N}^{5}}+27 \frac{m_{\pi}^{8}}{\hat{M}_{N}^{5}}\right)}{m_{\pi}\left(4-\frac{m_{\pi}^{2}}{\hat{M}_{N}^{2}}\right)^{3 / 2}}\right. \\
& \times \arctan \left(\frac{\Lambda}{m_{\pi}} \sqrt{\left.\frac{4 \hat{M}_{N}^{2}-m_{\pi}^{2}}{4 \hat{M}_{N}^{2}+\Lambda^{2}}\right)-\left(\frac{9}{\hat{M}_{N}}-\frac{50 m_{\pi}^{2}}{\hat{M}_{N}^{3}}+\frac{27 m_{\pi}^{4}}{\hat{M}_{N}^{5}}\right)}\right. \\
& \times\left[2 \operatorname{arcsinh} \frac{\Lambda}{2 \hat{M}_{N}}+\log \frac{m_{\pi}^{2}}{m_{\pi}^{2}+\Lambda^{2}}\right]-\frac{\Lambda^{2}}{\hat{M}_{N}^{3}}\left[\frac{27\left(\Lambda^{2}-2 m_{\pi}^{2}\right)}{2 \hat{M}_{N}^{2}}\right. \\
& \times\left(1-\sqrt{1+\frac{4 \hat{M}_{N}^{2}}{\Lambda^{2}}}\right)+50-23 \sqrt{1+\frac{4 \hat{M}_{N}^{2}}{\Lambda^{2}}} \\
\Lambda^{2}\left(4 \hat{M}_{N}^{2}+\Lambda^{2}\right)\left(4 \hat{M}_{N}^{2}-m_{\pi}^{2}\right)
\end{array}\right] . \quad .
$$

