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Overview

Aims

to understand the chiral behaviour of hadrons, and obtain a
quantitative description of chiral symmetry breaking.

to improve relativistically upon the properties of the heavy-baryon
expansion, leading to baryon chiral perturbation theory (BχPT).

to import the method of finite-range regularization (FRR) without
compromising any symmetries, whilst inheriting its advantageous
features.

to perform a more reliable chiral extrapolation of lattice QCD
results, i.e. reducing the systematic uncertainty.
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Introduction

What is a dispersion relation?

A Kramers-Kronig dispersion relation tells us about the analyticity
of a complex function.

Recall that an analytic function may be written f = u + iv

(u, v : real-valued on some domain Ω). The real part of f , (i.e. u)
can be defined in terms of its harmonic conjugate (v) via a Hilbert
transform:

u (t0) =
1

π
P
∫

∞

−∞

dt
v (t)

t − t0
, t0, t ∈ Ω.

We’ll find: in chiral perturbation theory (χPT), t equals mq,
and the principal value integral becomes an integral over the
negative real-axis of mq.
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Introduction

Why the pion mass?

In χPT, the quark mass, mq, is not a fixed parameter. We expand
about the ‘chiral limit’, mq → 0, to obtain chiral formulae.

Observables such as nucleon mass (f ≡ MN) or anomalous
magnetic moment (AMM) (f ≡ κ) become functions of mq.

The quark mass is related to the pion-mass squared by the
Gell-Mann−Oakes−Renner Relation (GOR): mq ∝ m2

π.

Looking at the complex plane of m2
π, the observables, f , are

analytic- except for a branch-cut in the negative real-axis,
associated with pion-production.
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Introduction

Why the pion mass?

t

Figure: The complex t = m2
π plane, with the branch-cut along the

negative real axis, and the contour indicating the analyticity domain.
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Introduction

A general pion-mass dispersion relation

The pion-mass dispersion relation takes the general form
(for static quantity, f ):

Re f (m2
π) = −

1

π

∫ 0

−∞

dt
Im f (t)

t −m2
π

.

We can analyze the analytic properties of the observables, f , very
easily:

any disruption to chiral symmetry is explicitly realized. Violations of
analyticity (away from the branch-cut) become apparent
immediately.

the dispersion relation can be used to obtain relativistically
improved chiral formulae.
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The pion-mass dispersion relation
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The pion-mass dispersion relation

Loop-momentum vs. pion-mass

Consider the mass of the nucleon, MN(m
2
π), as an example.

In χPT, the chiral expansion formula for MN , to order m3
π, is:

MN =
◦

MN +c2m
2
π + χm3

π.

The formula contains analytic and nonanalytic terms. χ is a
constant (fixing gA, fπ, etc. to their phenomenological values).

The nonanalytic contribution comes from the leading-order chiral
loop integral.
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The pion-mass dispersion relation

Loop momentum vs. pion mass

The leading-order 1-pion loop takes the following simplified form in
heavy-baryon χPT (HBχPT):

= ΣHB

πN (m
2
π) = χ

2

π

∫

∞

0
dk

k4

k2 +m2
π

.

After a change of integration variable, t = −k2, we get:

ΣHB

πN (m
2
π) = −

1

π

∫ 0

−∞

dt
χ (−t)3/2
t −m2

π

←
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The pion-mass dispersion relation

Loop momentum vs. pion mass

This formula is simply the dispersion relation, with
ImΣHB

πN (t) = χ (−t)3/2, and t taking values on the negative
real-axis branch-cut in the complex plane.

The dispersion relation is satisfied, since the nonanalytic term, χm3
π,

from the chiral formula is the only contributor to ImΣHB
πN (m

2
π) at

order m3
π.

We shall use the t-integration form of the loop integral from now
on, for two main reasons:

It is explicitly clear that no symmetries of the theory are violated,
even if a (sharp) finite-range cutoff in the t-integral is introduced.

It is usually easier to calculate the imaginary part of the loop
contribution than to evaluate the pole- and angular-integrations
(especially without heavy-baryon theory, or for multi-loop
expressions).
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The pion-mass dispersion relation

Subtractions

We would like to write the chiral formula for MN(m
2
π) in terms of

our new dispersion relation.

ΣHB
πN (m

2
π) gives us the correct nonanalytic contribution to MN , but

also gives extra analytic terms:

ΣHB
πN (m

2
π) = b0 + b2m

2
π + χm3

π.

The extra terms b0 and b2m
2
π should be absorbed (renormalized)

into
◦

MN and c2m
2
π, respectively. Thus, we must subtract off the

extra terms from the loop integral ΣHB
πN . (Use C.I.F. for derivatives):

ΣHB
πN (m

2
π)−ΣHB

πN (0)−ΣHB
πN

′(0)m2
π = − 1

π

∫ 0

−∞

dt
ImΣHB

πN (t)

t −m2
π

(

m2
π

t

)2

.

For the nucleon mass, evidently two subtractions are required

(n = 2), and
◦

MN and c2 are the ‘subtraction constants’.
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(n = 2), and
◦

MN and c2 are the ‘subtraction constants’.
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The pion-mass dispersion relation

Subtractions

The chiral expansion formula for MN can now be written in terms of
the subtracted dispersion relation:
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◦
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2
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π
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−∞

dt
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m2
π

t

)2

=
◦

MN +c2m
2
π + Σ̃HB

πN (m
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π).

In general, we write the dispersion relation for n subtractions as:

f (m2
π) = −
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π

∫ 0
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dt
Im f (t)
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π
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m2
π

t

)n
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Finite-range regularization

Finite-range regularization

Finite-range regularization (FRR) has some useful properties:

It is suitable for composite particles, where degrees of freedom at
higher energy scales exist (quarks/gluons).

It can be used to determine the power-counting regime (PCR) of
χPT, where the chiral expansion is convergent [hep-lat/0501028].

It can be used to improve the heavy-baryon expansion by
resumming the chiral series so the higher-order terms are small
[hep-lat/0302020].

It allows a calculation to be performed outside the PCR (at the
expense of model-independence, albeit quantifiably)
[hep-lat/1002.4924].

We would like to incorporate these properties into our dispersion
relation, without compromising any symmetries.
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Finite-range regularization

Introducing a cutoff

Recall: chiral formulae are not convergent series expansions in
general, but are asymptotic expansions in mπ/Λχ, (Λχ ≃ 4πfπ ∼ 1
GeV).

Consider the dispersion relation integral split into two parts:

f (m2
π) = −

1

π

(

∫ 0

−Λ2

dt +

∫

−Λ2

−∞

dt

)

Im f (t)

t −m2
π

, Λ ∼ Λχ.

The first integral contains the chiral nonanalytic terms, but has
been cut off at the scale: −Λ2.

The second integral can be expanded in integer powers of m2
π/Λ

2,
thus contributing analytic terms.

Any physics above the scale Λχ is not described by χPT, and thus

should be absorbable into the low-energy coefficients (
◦

MN , c2,. . . ).
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Finite-range regularization

Introducing a cutoff

The second integral generates an infinite series of terms, but they
are analytic, and therefore absorbable (in principle) into the
low-energy coefficients.

Since we are working to chiral order m3
π, we only have a finite

number of low-energy coefficients. But the terms from the second
integral should be comparable to other higher-order terms
neglected.

Therefore, we can drop the second integral, and have:

f (m2
π) = −

1

π

∫ 0

−Λ2

dt
Im f (t)

t −m2
π

.

The Λ-dependence of this integral simply reflects the uncertainty
due to higher-order effects from the expansion.
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Finite-range regularization

Introducing a cutoff

We would like to use this FRR dispersion relation to compare results
from heavy-baryon and non-heavy-baryon chiral perturbation theory
(HBχPT vs. BχPT).

By imposing the cutoff, Λ ∼ 1 GeV, we can investigate the
convergence properties of the chiral expansion in m2

π, without
computing the higher order terms (often done in the FRR
literature).

If there is a significant deviation between HBχPT and BχPT for
Λ≪ 1 GeV, (at chiral finite order), the two expansions cannot be
reconciled in a ‘natural’ way- i.e. higher-order terms must become
unnaturally large in order to reconcile them.

We shall examine the situation for several specific examples: the
nucleon mass, anomalous magnetic moment, and the proton
magnetic polarizability; and for each one obtain a different picture.
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Baryon chiral perturbation theory

20 / 51
An improved chiral expansion using a pion-mass dispersion relation

N



Baryon chiral perturbation theory

Properties at O(m3
π): nucleon mass

Recall the chiral expansion formula for the nucleon mass MN :

MFRR

N =
◦

MN +c2m
2
π −

1

π

∫ 0

−Λ2

dt
ImMN(t)

t −m2
π

(

m2
π

t

)2

.

In HBχPT, we had:

ImMN(t)
HB
= Im {χ t3/2} = χ t

√
−t θ(−t).

In BχPT, one obtains the following formula from the covariant
integral result (for physical nucleon mass scale M̂N ≃ 939 MeV):

ImMN(t)
B
= −χ t

(

1

2

t

M̂N

+

√

1

4

t2

M̂2
N

− t

)

θ(−t).

21 / 51
An improved chiral expansion using a pion-mass dispersion relation

N



Baryon chiral perturbation theory

Properties at O(m3
π): nucleon mass

Recall the chiral expansion formula for the nucleon mass MN :

MFRR

N =
◦

MN +c2m
2
π −

1

π

∫ 0

−Λ2

dt
ImMN(t)

t −m2
π

(

m2
π

t

)2

.

In HBχPT, we had:

ImMN(t)
HB
= Im {χ t3/2} = χ t

√
−t θ(−t).

In BχPT, one obtains the following formula from the covariant
integral result (for physical nucleon mass scale M̂N ≃ 939 MeV):

ImMN(t)
B
= −χ t

(

1

2

t

M̂N

+

√

1

4

t2

M̂2
N

− t

)

θ(−t).

21 / 51
An improved chiral expansion using a pion-mass dispersion relation

N



Baryon chiral perturbation theory

Properties at O(m3
π): nucleon mass

Recall the chiral expansion formula for the nucleon mass MN :

MFRR

N =
◦

MN +c2m
2
π −

1

π

∫ 0

−Λ2

dt
ImMN(t)

t −m2
π

(

m2
π

t

)2

.

In HBχPT, we had:

ImMN(t)
HB
= Im {χ t3/2} = χ t

√
−t θ(−t).

In BχPT, one obtains the following formula from the covariant
integral result (for physical nucleon mass scale M̂N ≃ 939 MeV):

ImMN(t)
B
= −χ t

(

1

2

t

M̂N

+

√

1

4

t2

M̂2
N

− t

)

θ(−t).

21 / 51
An improved chiral expansion using a pion-mass dispersion relation

N



Baryon chiral perturbation theory

Properties at O(m3
π): nucleon mass

Recall the chiral expansion formula for the nucleon mass MN :

MFRR

N =
◦

MN +c2m
2
π −

1

π

∫ 0

−Λ2

dt
ImMN(t)

t −m2
π

(

m2
π

t

)2

.

In HBχPT, we had:

ImMN(t)
HB
= Im {χ t3/2} = χ t

√
−t θ(−t).

In BχPT, one obtains the following formula from the covariant
integral result (for physical nucleon mass scale M̂N ≃ 939 MeV):

ImMN(t)
B
= −χ t

(

1

2

t

M̂N

+

√

1

4

t2

M̂2
N

− t

)

θ(−t).

21 / 51
An improved chiral expansion using a pion-mass dispersion relation

N



Baryon chiral perturbation theory

Properties at O(m3
π): nucleon mass

Recall the chiral expansion formula for the nucleon mass MN :

MFRR

N =
◦

MN +c2m
2
π −

1

π

∫ 0

−Λ2

dt
ImMN(t)

t −m2
π

(

m2
π

t

)2

.

In HBχPT, we had:

ImMN(t)
HB
= Im {χ t3/2} = χ t

√
−t θ(−t).

In BχPT, one obtains the following formula from the covariant
integral result (for physical nucleon mass scale M̂N ≃ 939 MeV):

ImMN(t)
B
= −χ t

(

1

2

t

M̂N

+

√

1

4

t2

M̂2
N

− t

)

θ(−t).

21 / 51
An improved chiral expansion using a pion-mass dispersion relation

N



Baryon chiral perturbation theory

Properties at O(m3
π): nucleon mass

Recall the chiral expansion formula for the nucleon mass MN :

MFRR

N =
◦

MN +c2m
2
π −

1

π

∫ 0

−Λ2

dt
ImMN(t)

t −m2
π

(

m2
π

t

)2

.

In HBχPT, we had:

ImMN(t)
HB
= Im {χ t3/2} = χ t

√
−t θ(−t).

In BχPT, one obtains the following formula from the covariant
integral result (for physical nucleon mass scale M̂N ≃ 939 MeV):

ImMN(t)
B
= −χ t

(

1

2

t

M̂N

+

√

1

4

t2

M̂2
N

− t

)

θ(−t).

21 / 51
An improved chiral expansion using a pion-mass dispersion relation

N



Baryon chiral perturbation theory

Properties at O(m3
π): nucleon mass

By computing the FRR dispersion relation, the following chiral
expansions are be obtained:

MFRR

N

HB
=

◦

MN +c2m
2
π + χ

2

π

{

m3
π arctan

Λ

mπ
− Λ3

3
− Λm2

π

}

.

MFRR

N

B
=

◦

MN +c2m
2
π +

χm4
π

2πM̂N

{

2

√

4M̂2
N

m2
π

− 1 arctan

(

Λ

mπ

√

√

√

√

4M̂2
N −m2

π

4M̂2
N + Λ2

)

+ 2 arcsinh
Λ

2M̂N

+ log
m2

π

m2
π + Λ2

}

.
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Baryon chiral perturbation theory

Properties at O(m3
π): nucleon mass
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Baryon chiral perturbation theory

Dependence on the cutoff Λ

Λ (GeV)

Figure: The Λ-dependence of leading-order loop contributions to the

nucleon mass, M
(3)
N ≡ Σ̃πN , calculated in HBχPT (blue dashed curves)

and BχPT (red solid curves) at m2
π = m2

π,phys.
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Baryon chiral perturbation theory

Properties at O(m3
π): nucleon mass

The HBχPT formula can be obtained from the BχPT by taking the
heavy-baryon limit: M̂N →∞.

We will find that, for all our examples of f , the HBχPT formulae
contain the term:

Σ̃f
HB(m2

π; Λ) = −2χm2n−1
π arctan

Λ

mπ
.

n (the number of subtractions) specifies the leading nonanalytic
term (in m2

π).

The power index n will help us classify the ‘naturalness’ of the
heavy-baryon expansion.
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Baryon chiral perturbation theory

Properties at O(m3
π): AMMs

A similar treatment follows for the anomalous magnetic moment
(AMM), κ, of the proton and neutron.

The finite-size behaviour of a hadron (pion-cloud corrections) leads
to an anomalous component, κ, to its magnetic moment (in
addition to its Dirac moment).

The leading-order contribution to the AMM is a 1-pion loop with
minimal insertion of one photon.

The imaginary parts of the AMMs in HBχPT are:

Imκp(t)
HB
= −4

3
χM̂N

√
−t θ(−t) = −Imκn(t).

The leading-order nonanalytic term is ∼mπ: lower than for the
nucleon mass. Thus, only one subtraction is needed in the
dispersion relation (i.e. n = 1).
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Baryon chiral perturbation theory

Properties at O(m3
π): AMMs

Chiral formulae corresponding to HBχPT and BχPT may again be
obtained by evaluating the dispersion relation:

κFRR

p,n =
◦

κp,n −
1

π

∫ 0

−Λ2

dt
Imκp,n(t)

t −m2
π

(

m2
π

t

)1

.

In lattice QCD, the isovector nucleon (p − n) is used, so that
calculations involving all-to-all propagators cancel.

The isovector nucleon AMM formula may also include a term linear
in m2

π if desired (for fitting):

κisov(m
2
π; Λ

2) = κp(m
2
π; Λ

2)− κn(m
2
π; Λ

2) + a2m
2
π.
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Baryon chiral perturbation theory

Dependence on the cutoff Λ

Λ (GeV)

Figure: The Λ-dependence of leading-order loop contributions to the
isovector nucleon AMM, calculated in HBχPT (blue dashed curves) and
BχPT (red solid curves) at m2

π = m2
π,phys.
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Baryon chiral perturbation theory

Properties at O(m3
π): polarizabilities

We shall also consider the magnetic polarizability, βp, of the proton.

Its leading-order contribution is a 1-pion loop with minimal insertion
of two photons.

The imaginary part of the polarizability in HBχPT is:

Imβp(t)
HB
= − α

18
χ

1√
−t θ(−t) (α ≃ 1/137).

Here, the leading-order nonanalytic term is ∼ 1/mπ. No
subtractions are required. Furthermore, this negative power of m2

π

will have consequences for the heavy-baryon expansion.
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Baryon chiral perturbation theory

Dependence on the cutoff Λ

Λ (GeV)

Figure: The Λ-dependence of leading-order loop contributions to the
proton magnetic polarizability, calculated in HBχPT (blue dashed curves)
and BχPT (red solid curves) at m2

π = m2
π,phys.
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Baryon chiral perturbation theory

Dependence on the cutoff Λ

The residual Λ-dependence in HBχPT falls off as 1/Λ in all
examples, whereas in BχPT, it behaves as 1/Λ2 for MN , and 1/Λ4

for the AMMs and polarizability.

The stronger dependence on Λ indicates a greater impact from the
unknown high-energy physics to be renormalized.

Note, however, that the HBχPT and BχPT results are identical in
the limit Λ→ 0 (guaranteed).
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Baryon chiral perturbation theory

Dependence on the cutoff Λ

In the case of the magnetic polarizability of the proton, there is
significant difference in the results, even at Λ ∼ mπ,physical ≪ 1
GeV, and the results are the opposite sign!

This is because the BχPT formula contains contributions
∼ −1/M̂N , which are largely underestimated in HBχPT.

Recalling the formula:

Σ̃f
HB(m2

π; Λ) = −2χm2n−1
π arctan

Λ

mπ
,

the power index, n, allows us to classify the naturalness of the heavy-baryon

expansion. The lower the value of n, the greater the difficulty for HBχPT to

describe a quantity.

The fact that n = 0, i.e. negative powers of mπ, indicates a
dramatic failure of HBχPT, as observed.
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Confronting the data: chiral

extrapolation
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Confronting the data: chiral extrapolation

Confronting the data

The results of χPT must be matched to an underlying theory.

In the case of polarizabilities, there are no unknown parameters at
leading order, so a χPT result is a genuine prediction.
But: there are currently no lattice results to use, and the
experimental value is uncertain.

For the nucleon mass, we don’t expect much difference between
HBχPT and BχPT near the physical pion mass, but the difference
can be significant for larger pion masses.

For the AMM, the leading-order nonanalytic term occurs at a lower
order than for the nucleon mass, placing more importance on the
chiral curvature.
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Confronting the data: chiral extrapolation

MN extrapolation- lattice QCD

Figure: Chiral extrapolations of the nucleon mass for HBχPT compared
to BχPT at Λ = 0.5 GeV. The extrapolation based on PACS-CS results,
box size: 2.9 fm. Finite-volume effects are neglected.
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Confronting the data: chiral extrapolation

MN extrapolation- lattice QCD

Figure: Chiral extrapolations of the nucleon mass for HBχPT compared
to BχPT at Λ = 1.0 GeV. The extrapolation based on PACS-CS results,
box size: 2.9 fm. Finite-volume effects are neglected.
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Figure: Chiral extrapolations of the nucleon mass for HBχPT compared
to BχPT at Λ = 2.0 GeV. The extrapolation based on PACS-CS results,
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Confronting the data: chiral extrapolation

MN extrapolation- lattice QCD

Figure: Chiral extrapolations of the nucleon mass for HBχPT compared
to BχPT at Λ = 0.5 GeV. The extrapolation based on JLQCD results,
box size: 1.9 fm. Finite-volume effects are neglected.
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MN extrapolation- lattice QCD

Figure: Chiral extrapolations of the nucleon mass for HBχPT compared
to BχPT at Λ = 1.0 GeV. The extrapolation based on JLQCD results,
box size: 1.9 fm. Finite-volume effects are neglected.
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Confronting the data: chiral extrapolation

MN extrapolation- lattice QCD

Figure: Chiral extrapolations of the nucleon mass for HBχPT compared
to BχPT at Λ = 2.0 GeV. The extrapolation based on JLQCD results,
box size: 1.9 fm. Finite-volume effects are neglected.

39 / 51
An improved chiral expansion using a pion-mass dispersion relation

N



Confronting the data: chiral extrapolation

MN extrapolation- lattice QCD

For small values of Λ, the chiral loops are suppressed, an
almost-linear fit ensues, yielding a poor fit to the low pion-mass
lattice results.

For large values of Λ, the HBχPT result struggles to fit the lattice
results due to large curvature in the heavy pion-mass region.

The best cutoff scale to use appears to be Λ ≃ 1 GeV, in agreement
with previous FRR studies.

Overall, the BχPT result is less sensitive to changes in the cutoff
scale, Λ, leading to a more stable fit.
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Confronting the data: chiral extrapolation

AMM extrapolation- lattice QCD

Figure: Chiral extrapolations of the isovector nucleon AMM for HBχPT
compared to BχPT at Λ = 0.5 GeV. The extrapolation based on QCDSF
results, box size: 1.7− 2.9 fm. Finite-volume effects are neglected.
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Confronting the data: chiral extrapolation

AMM extrapolation- lattice QCD

Figure: Chiral extrapolations of the isovector nucleon AMM for HBχPT
compared to BχPT at Λ = 0.8 GeV. The extrapolation based on QCDSF
results, box size: 1.7− 2.9 fm. Finite-volume effects are neglected.
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Confronting the data: chiral extrapolation

AMM extrapolation- lattice QCD

Figure: Chiral extrapolations of the isovector nucleon AMM for HBχPT
compared to BχPT at Λ = 1.0 GeV. The extrapolation based on QCDSF
results, box size: 1.7− 2.9 fm. Finite-volume effects are neglected.
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Confronting the data: chiral extrapolation

AMM extrapolation- lattice QCD

In the AMM extrapolation, we see larger chiral curvature than the
case of MN , because of its lower-order leading nonanalytic term
(∼mπ).

For this reason, the HBχPT extrapolation becomes unfavorable at
large values of Λ, with large curvature for Λ & 1 GeV.

Even with the inclusion of the linear ‘a2 term’, which plays the role
of compensating for high-momentum contributions, the BχPT
result is much more stable to changes in ultraviolet behaviour.
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Conclusion

Conclusion

We utilised a pion-mass dispersion relation to examine analytic
properties of static quantities in chiral perturbation theory.

We incorporated the useful properties of finite-range regularization
into our chiral expansion formulae.

We derived a relativistic improvement (BχPT) to our chiral
formulae for the mass and anomalous magnetic moment of the
nucleon, and the magnetic polarizability of the proton.

We tested the new BχPT formulae by comparing their dependence
on the ultraviolet cutoff, Λ, with that of the heavy-baryon expansion
(HBχPT), using lattice QCD results. The BχPT formulae produced
more reliable chiral extrapolations.

We discovered a possible method for determining when then
heavy-baryon expansion becomes unnatural.
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Appendix

FRR BχPT chiral formulae

The relativistically-improved chiral formula for κp is:

κFRR
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Appendix

FRR BχPT chiral formulae

The relativistically-improved chiral formula for κn is:

κn =
◦

κn +
8χ

3π
M̂2

N

{

mπ(2− m2
π

M̂2
N

)

M̂N

(

4− m2
π

M̂2
N

)1/2
arctan

(

Λ

mπ

√

√

√

√

4M̂2
N −m2

π

4M̂2
N + Λ2

)

+
m2

π

2M̂2
N

[

2 arcsinh
Λ

2M̂N

+ log
m2

π

m2
π + Λ2

]

}

.

50 / 51
An improved chiral expansion using a pion-mass dispersion relation

N



Appendix

FRR BχPT chiral formulae

βp =
2αχ
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