Magnetic polarisability of the neutron from lattice QCD

Jonathan Hall

Collaborators: Derek Leinweber, Ross Young Special thanks: Thomas Primer

31 July 2013

CSSM, School of Chemistry and Physics, University of

Adelaide, Adelaide, South Australia 5005, Australia

1 / 38

Overview

- Aims
- Polarisabilities
- Lattice QCD
- Chiral effective field theory
 - Leading-order loop integrals
 - Finite-volume corrections
- Intrinsic scales
- Results
- Conclusion and outlook

Aims

- To estimate the magnetic polarisability of the neutron using effective field theory and lattice QCD.
- To specify the accurate handling of finite-volume corrections to lattice QCD results.
- To perform a robust chiral extrapolation from outside the power-counting regime.
- To examine the role of 'intrinsic scales' in an extended effective field theory.

Polarisabilities

Nucleon Compton scattering

- Nucleon Compton scattering tells us about the internal structure of hadrons.
- In the low photon-energy limit, the forward Compton amplitude, f₁, is described by the static electric and magnetic polarisabilities, α and β, respectively.
- The total photoabsorption cross section may also be described in terms of the forward Compton amplitude:

$$\sigma_T(\omega) = \frac{4\pi}{\omega} \operatorname{Im} f_1(\omega^2).$$

Experimental estimates

- Experimentally, the sum α + β is known more precisely than the individual polarisabilities.
- For the neutron, $\alpha_n + \beta_n = 15.8 \pm 0.5 \times 10^{-4}$ fm³.
- Values of the magnetic polarisability of the neutron include:
 - 4.1 (1.8) (0.4) (0.8) \times 10⁻⁴ fm³ (Grießhammer, *et. al.*);
 - 3.7 (20) \times 10 $^{-4}$ fm 3 (PDG); and
 - $2.7(1.8)^{+1.3}_{-1.6} \times 10^{-4} \text{ fm}^3 \text{ (Kossert et. al.).}$
- These experimental values will be compared to the chiral extrapolation from lattice QCD.

Lattice QCD

Lattice QCD

- Lattice QCD is a non-perturbative approach to QCD.
- It is performed at a finite volume, L = aN.
- The momenta only take discrete values defined in the box:

$$ec{k}=rac{2\pi}{L}ec{n},\quadec{n}\in\mathbb{Z}^3.$$

• Lattice calculations are typically performed at pion masses larger than the physical value of $m_{\pi} = 140$ MeV. Therefore, an extrapolation is necessary.

Lattice QCD

- Finite-volume effects can become significant in the chiral regime (small pion mass).
- It is important to handle finite-volume corrections accurately prior to chiral extrapolation.
- The chiral extrapolation must take into account the effects of chiral loops, which can be derived from chiral perturbation theory.

Background field method

- The static nucleon properties: magnetic moment (μ
 ⁱ) and polarisability (β), of a nucleon can be directly obtained by introducing a background magnetic field B on the lattice.
- This is done by multiplying each gauge link by a certain phase factor, resulting in the energy shift:

$$E(B)=M_N-ec\mu\cdotec B+rac{e|B|}{2M_N}-2\pieta B^2+\mathcal{O}(B^3).$$

Boundary conditions

• The magnetic field *B* is set up to be along a single spatial axis on the lattice (the *z* direction):

$$B_z = \partial_x A_y - \partial_y A_x.$$

• It can be made uniform by handling discontinuities at the lattice boundaries with a choice of gauge field:

$$A_y(x,y) = \begin{cases} 0, & \text{for } y/a < N_y - 1\\ N_y Bx, & \text{for } y/a = N_y - 1 \end{cases}$$

Boundary conditions

• The issue of the double boundary, $x/a = N_x - 1$ and $y/a = N_y - 1$ leads to the quantisation condition:

$$qBa^2 = rac{2\pi n}{N_x N_y}, \quad n \in \mathbb{Z}.$$

• Therefore, the choices of magnetic field strength are limited, based on the lattice size.

Lattice results

• The CSSM lattice results to be analysed are based on PACS-CS configurations obtained through the ILDG.

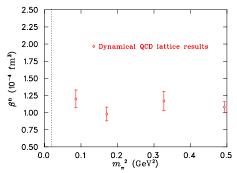


Figure: Magnetic polarisability of the neutron, extracted from lattice QCD simulations at multiple values of pion mass.

Chiral effective field theory

Magnetic polarisability of the neutron from lattice QCD

Polarisabilities in effective field theory

• In chiral effective field theory, the Compton amplitude is related to the tensor field with four momentum-dependent parameters:

$$\Theta_{\mu\nu} = e^2 [g_{\mu\nu}A(s) + q_{\mu}q_{\nu}B(s) + (p_{\mu}q_{\nu} + p_{\nu}q_{\mu})C(s) + p_{\mu}p_{\nu}D(s)].$$

- p is the initial nucleon momentum, q is the photon momentum, and $s \equiv (p+q)^2$.
- Of the four parameters, only two are independent, and the polarisabilities take the form:

$$lpha + eta = -rac{e^2 m}{2\pi} rac{\partial^2 A(s)}{\partial s^2}\Big|_{s=m^2}, \quad eta = -rac{e^2}{4\pi m} B(s=m^2).$$

Chiral loop integrals at leading order

- The chiral loops that contribute to the polarisabilities may be arranged using power-counting.
- In the forward limit, $q \cdot q' \rightarrow 0$, we can expand the polarisabilities in quark mass or pion mass $(m_q \propto m_{\pi}^2)$:

$$\beta = \frac{\chi_1}{m_\pi} + c_0 + \chi_2 \log(m_\pi/\mu) + \mathcal{O}(m_\pi).$$

- This is called the chiral expansion. The nonanalytic terms in quark mass are obtained from the chiral loops. *c*₀ is the leading order low-energy coefficient.
- μ is a mass scale associated with the logarithm, which we can freely set to $\mu = 1$ GeV. The χ coefficients are constant products of known couplings.

Chiral loop integrals at leading order

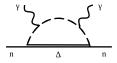
• The leading-order loop diagram for the neutron takes the following form for heavy baryons:

$$\frac{\sum_{n=1}^{\gamma} \sum_{p=1}^{\pi} \sqrt{\sum_{n=1}^{\gamma}}}{p} \beta_{n}^{\pi N} = \frac{e^{2}}{4\pi} \frac{g_{A}^{2}}{144\pi^{3} f_{\pi}^{2}} \int d^{3}k \frac{\vec{k}^{2}}{(\vec{k}^{2} + m_{\pi}^{2})^{3}} = \frac{\chi_{1}}{m_{\pi}}$$

- At chiral order O(log m_π) in the expansion, the loop integrals are convergent.
- This provides a testing ground for a variety of difference schemes (massless regularisation, covariant, finite-range regularisation).

Chiral loop integrals at leading order

 One may also include a Δ baryon transition, which takes the following form for the neutron in heavy-baryon theory:



$$\beta_{n}^{\pi\Delta} = \frac{e^{2}}{4\pi} \frac{1}{288\pi^{3} f_{\pi}^{2}} \frac{16}{27} C^{2} \int d^{3}k \, \frac{\omega_{\vec{k}}^{2} \Delta (3\omega_{\vec{k}} + \Delta) + k^{2} (8\omega_{\vec{k}}^{2} + 9\omega_{\vec{k}} \Delta + 3\Delta^{2})}{16\omega_{\vec{k}}^{5} (\omega_{\vec{k}} + \Delta)^{3}}$$
$$= \chi_{2} \log(m_{\pi}/\mu), \qquad \omega_{\vec{k}} = \sqrt{\vec{k}^{2} + m_{\pi}^{2}}, \quad \Delta \equiv M_{\Delta} - M_{N}.$$

19 / 38

Finite-volume corrections

• Finite-volume corrections can be estimated by calculating the difference between the loop integral and the finite sum of available lattice momenta.

$$\delta_{L}[\beta^{\text{loops}}] = \left[\frac{(2\pi)^{3}}{L_{x}L_{y}L_{z}}\sum_{k_{x},k_{y},k_{z}} - \int d^{3}k\right] \mathcal{I}(k,m_{\pi}^{2}).$$

- At this chiral order, regularisation of the loop integrals/sums is less important, as the integrals are convergent.
- $\delta_L[\beta^{\text{loops}}]$ saturates to an asymptotic value, which can be obtained for any fixed suitably large U.V. momentum cutoff.

20 / 38

Magnetic polarisability of the neutron from lattice QCD

Power-counting regime

- When applying chiral effective field theory to lattice QCD results, one must be aware of the power-counting regime.
- Lattice results invariably extend outside the power-counting regime $(m_{\pi} \lesssim 200 \text{ MeV})$. When using those results to perform an extrapolation, the chiral expansion is divergent.
- One should then use a finite-range regulator (FRR), which cuts off the divergence, and resums the higher-order terms of the expansion.

22 / 38

Extended effective field theory

- In extended effective field theory, one models the higher-order terms of the expansion, which become significant outside the power-counting regime.
- Inside the power-counting regime, FRR effective field theory and chiral perturbation theory are identical.
- Outside the power-counting regime, standard chiral perturbation theory should not be used.
- Using FRR, the best choice of regularisation scale is the intrinsic scale. This is important when working outside the power-counting regime.

- The intrinsic scale is the scale at which the low-energy coefficients of the chiral expansion are independent of the pion mass.
- Within the power-counting regime, where all regularisation schemes are equivalent, the range of suitable cutoff scales is very broad.
- Outside the power-counting regime, only a small range of the regularisation scale yields the correct values of the expansion coefficients.
- The intrinsic scale of the nucleon is typically $\Lambda \sim 1$ GeV, if one uses a dipole FRR in the loop integrals/sums:

$$u(k) = \left(1 + \frac{k^2}{\Lambda^2}\right)^{-2}.$$

• As an example: analysis of the leading-order coefficient of the magnetic moment expansion yields a unique crossing-point.

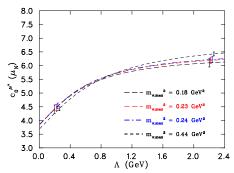


Figure: Nucleon magnetic moment analysis of QCDSF lattice results yields $\Lambda^{\rm scale}=0.87^{+0.42}_{-0.26}$ GeV.

• By considering a variety of static nucleon observables (mass, magnetic moment, electric charge radius) a weighted average yields an intrinsic scale of:

 $\bar{\Lambda}^{\rm scale} = 0.99(27) {
m ~GeV}.$

• Chiral extrapolations from FRR effective field theory using the intrinsic scale will be compared to a variety of typical massless schemes.

26 / 38

Results

Magnetic polarisability of the neutron from lattice QCD

Results

Results

• The finite-volume corrections and chiral extrapolation of the magnetic polarisability of the neutron will now be applied to the recent CSSM lattice simulation results, using the fit formula:

$$\beta_n = a_0 + a_2 m_\pi^2 + \beta_n^{\pi N} + \delta_L[\beta_n^{\pi N}] + \beta_n^{\pi \Delta} + \delta_L[\beta_n^{\pi \Delta}].$$

- We add a linear term, $a_2 m_{\pi}^2$, to the chiral expansion, with fit parameter a_2 , to account any residual curvature in the polarisabilities.
- This can account for any variation in obtaining a plateau in the extraction of β from the lattice calculation at each value of m²_π.

28 / 38

• An extrapolation at the finite box size of the lattice, L = 3 fm, shows fairly weak chiral curvature.

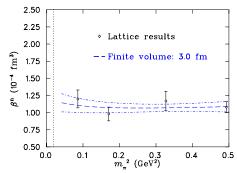


Figure: Extrapolation of β_n at L = 3.0 fm, corresponding to the volume of the lightest point in m_{π}^2 . The constraint $m_{\pi}L > 3$ is used.

• The expectation of the lattice calculation for current and future box sizes; boxes as large as 7 fm are required to reach within 5% of the infinite-volume result at the physical point.

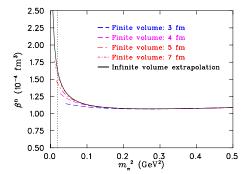


Figure: Extrapolation of β_n for a variety of box sizes, including infinite volume.

- FRR suppresses the curvature at large m_{π} .
- The differences among the curves indicate that the lattice results extend outside the power-counting regime.

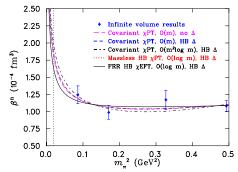


Figure: A comparison of a variety of massless regularization schemes, and a dipole FRR effective field theory with $\bar{\Lambda}^{\rm scale} = 0.99$ GeV.

• The final prediction of the magnetic polarisability is $\beta_n = 1.62(11)^{\text{stat}}(13)^{\text{sys}} \times 10^{-4} \text{ fm}^3.$

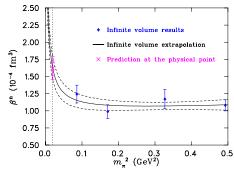


Figure: Prediction of the value of β_n at the physical point, at infinite volume. The inner error bar represents the statistical uncertainty, and the outer error bar adds the systematic uncertainty from $\bar{\Lambda}^{scale}$ in quadrature.

• A comparison between the prediction and the experimental results.

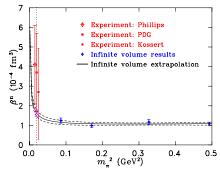


Figure: Prediction of the value of β_n at the physical point. To distinguish the different error bars easily, an offset is introduced among the experimental points along the m_{π}^2 -axis.

Conclusion and outlook

Conclusion

- Lattice QCD has made significant progress in simulating uniform magnetic fields at finite volume to obtain moments and polarisabilities.
- The correct handling of finite-volume corrections is vital for a reliable chiral extrapolation.
- A range of finite box sizes were considered, providing future lattice QCD calculations with a benchmark in estimating the size of finite-volume effects.
- Using lattice results that extend outside the chiral power-counting regime, an extended effective field theory using the intrinsic scale must be used.
- By correcting to infinite volume, a prediction was made for the magnetic polarisability of the neutron at the physical point:
 β_n = 1.62(11)^{stat}(13^{sys}) × 10⁻⁴ fm³.

35 / 38

Outlook for the future

- A more precise determination of the polarizabilities from experiment will assist in further testing the theoretical prediction.
- An analysis using partially-quenched QCD contributions is also a useful step for the future.

References

- CSSM lattice results: PoS Lattice2012, 183, hep-lat/1212.1963.
- Intrinsic scale: Phys.Rev.D 84, 114011 (2011), hep-lat/1101.4411
 - Nucleon electric charge radius analysis: Phys.Rev.D 88, 014504 (2013), hep-lat/1305.3984.
 - Nucleon magnetic moment analysis: Phys.Rev.D 85, 094502 (2012), hep-lat/1201.6114.
 - Nucleon mass analysis: Phys.Rev.D 82, 034010 (2010), hep-lat/1002.4924.

