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Overview

Aims

To estimate the magnetic polarisability of the neutron using
effective field theory and lattice QCD.

To specify the accurate handling of finite-volume corrections to
lattice QCD results.

To perform a robust chiral extrapolation from outside the
power-counting regime.

To examine the role of ‘intrinsic scales’ in an extended effective field
theory.
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Polarisabilities
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Polarisabilities

Nucleon Compton scattering

Nucleon Compton scattering tells us about the internal structure of
hadrons.

In the low photon-energy limit, the forward Compton amplitude, f1,
is described by the static electric and magnetic polarisabilities, α
and β, respectively.

The total photoabsorption cross section may also be described in
terms of the forward Compton amplitude:

σT (ω) =
4π

ω
Im f1(ω2).
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Polarisabilities

Experimental estimates

Experimentally, the sum α + β is known more precisely than the
individual polarisabilities.

For the neutron, αn + βn = 15.8± 0.5× 10−4 fm3.

Values of the magnetic polarisability of the neutron include:

4.1 (1.8) (0.4) (0.8) × 10−4 fm3 (Grießhammer, et. al.);

3.7 (20) × 10−4 fm3 (PDG); and

2.7 (1.8)+1.3
−1.6 × 10−4 fm3 (Kossert et. al.).

These experimental values will be compared to the chiral
extrapolation from lattice QCD.
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Lattice QCD
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Lattice QCD

Lattice QCD

Lattice QCD is a non-perturbative approach to QCD.

It is performed at a finite volume, L = aN.

The momenta only take discrete values defined in the box:

~k =
2π

L
~n, ~n ∈ Z3.

Lattice calculations are typically performed at pion masses larger
than the physical value of mπ = 140 MeV. Therefore, an
extrapolation is necessary.
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Lattice QCD

Lattice QCD

Finite-volume effects can become significant in the chiral regime
(small pion mass).

It is important to handle finite-volume corrections accurately prior
to chiral extrapolation.

The chiral extrapolation must take into account the effects of chiral
loops, which can be derived from chiral perturbation theory.
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Lattice QCD

Background field method

The static nucleon properties: magnetic moment (~µ) and
polarisability (β), of a nucleon can be directly obtained by
introducing a background magnetic field B on the lattice.

This is done by multiplying each gauge link by a certain phase
factor, resulting in the energy shift:

E (B) = MN − ~µ · ~B +
e|B|
2MN

− 2πβB2 +O(B3).
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Lattice QCD

Boundary conditions

The magnetic field B is set up to be along a single spatial axis on
the lattice (the z direction):

Bz = ∂xAy − ∂yAx .

It can be made uniform by handling discontinuities at the lattice
boundaries with a choice of gauge field:

Ay (x , y) =
{ 0, for y/a < Ny − 1
NyBx , for y/a = Ny − 1
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Lattice QCD

Boundary conditions

The issue of the double boundary, x/a = Nx − 1 and y/a = Ny − 1
leads to the quantisation condition:

qBa2 =
2πn

NxNy
, n ∈ Z.

Therefore, the choices of magnetic field strength are limited, based
on the lattice size.
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Lattice QCD

Lattice results

The CSSM lattice results to be analysed are based on PACS-CS
configurations obtained through the ILDG.

Figure: Magnetic polarisability of the neutron, extracted from lattice QCD
simulations at multiple values of pion mass.
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Chiral effective field theory
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Chiral Effective field theory

Polarisabilities in effective field theory

In chiral effective field theory, the Compton amplitude is related to
the tensor field with four momentum-dependent parameters:

Θµν = e2[gµνA(s) + qµqνB(s) + (pµqν + pνqµ)C (s) + pµpνD(s)].

p is the initial nucleon momentum, q is the photon momentum, and
s ≡ (p + q)2.

Of the four parameters, only two are independent, and the
polarisabilities take the form:

α + β = −e2m

2π

∂2A(s)

∂s2

∣∣∣
s=m2

, β = − e2

4πm
B(s = m2).

16 / 38
Magnetic polarisability of the neutron from lattice QCD

N



Chiral Effective field theory

Chiral loop integrals at leading order

The chiral loops that contribute to the polarisabilities may be
arranged using power-counting.

In the forward limit, q · q′ → 0, we can expand the polarisabilities in
quark mass or pion mass (mq ∝ m2

π):

β =
χ1

mπ
+ c0 + χ2 log(mπ/µ) +O(mπ).

This is called the chiral expansion. The nonanalytic terms in quark
mass are obtained from the chiral loops. c0 is the leading order
low-energy coefficient.

µ is a mass scale associated with the logarithm, which we can freely
set to µ = 1 GeV. The χ coefficients are constant products of
known couplings.
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Chiral Effective field theory

Chiral loop integrals at leading order

The leading-order loop diagram for the neutron takes the following
form for heavy baryons:

βπNn =
e2

4π

g2
A

144π3f 2
π

∫
d3k

~k2

(~k2 + m2
π)3

=
χ1

mπ
.

At chiral order O(logmπ) in the expansion, the loop integrals are
convergent.

This provides a testing ground for a variety of difference schemes
(massless regularisation, covariant, finite-range regularisation).
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Chiral Effective field theory

Chiral loop integrals at leading order

One may also include a ∆ baryon transition, which takes the
following form for the neutron in heavy-baryon theory:

βπ∆
n =

e2

4π

1

288π3f 2
π

16

27
C2

∫
d3k

ω2
~k

∆(3ω~k + ∆) + k2(8ω2
~k

+ 9ω~k∆ + 3∆2)

16ω5
~k

(ω~k + ∆)3

= χ2 log(mπ/µ), ω~k =

√
~k2 + m2

π, ∆ ≡ M∆ −MN .

19 / 38
Magnetic polarisability of the neutron from lattice QCD

N



Chiral Effective field theory

Finite-volume corrections

Finite-volume corrections can be estimated by calculating the
difference between the loop integral and the finite sum of available
lattice momenta.

δL[βloops] =

 (2π)3

LxLyLz

∑
kx ,ky ,kz

−
∫
d3k

 I(k ,m2
π) .

At this chiral order, regularisation of the loop integrals/sums is less
important, as the integrals are convergent.

δL[βloops] saturates to an asymptotic value, which can be obtained
for any fixed suitably large U.V. momentum cutoff.
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Intrinsic scales
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Intrinsic scales

Power-counting regime

When applying chiral effective field theory to lattice QCD results,
one must be aware of the power-counting regime.

Lattice results invariably extend outside the power-counting regime
(mπ . 200 MeV). When using those results to perform an
extrapolation, the chiral expansion is divergent.

One should then use a finite-range regulator (FRR), which cuts off
the divergence, and resums the higher-order terms of the expansion.
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Intrinsic scales

Extended effective field theory

In extended effective field theory, one models the higher-order terms
of the expansion, which become significant outside the
power-counting regime.

Inside the power-counting regime, FRR effective field theory and
chiral perturbation theory are identical.

Outside the power-counting regime, standard chiral perturbation
theory should not be used.

Using FRR, the best choice of regularisation scale is the intrinsic
scale. This is important when working outside the power-counting
regime.
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Intrinsic scales

Intrinsic scales

The intrinsic scale is the scale at which the low-energy coefficients
of the chiral expansion are independent of the pion mass.

Within the power-counting regime, where all regularisation schemes
are equivalent, the range of suitable cutoff scales is very broad.

Outside the power-counting regime, only a small range of the
regularisation scale yields the correct values of the expansion
coefficients.

The intrinsic scale of the nucleon is typically Λ ∼ 1 GeV, if one uses
a dipole FRR in the loop integrals/sums:

u(k) =

(
1 +

k2

Λ2

)−2

.
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Intrinsic scales

Intrinsic scales

As an example: analysis of the leading-order coefficient of the
magnetic moment expansion yields a unique crossing-point.

Figure: Nucleon magnetic moment analysis of QCDSF lattice results yields
Λscale = 0.87+0.42

−0.36 GeV.
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Intrinsic scales

Intrinsic scales

By considering a variety of static nucleon observables (mass,
magnetic moment, electric charge radius) a weighted average yields
an intrinsic scale of:

Λ̄scale = 0.99(27) GeV.

Chiral extrapolations from FRR effective field theory using the
intrinsic scale will be compared to a variety of typical massless
schemes.
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Results

Results

The finite-volume corrections and chiral extrapolation of the
magnetic polarisability of the neutron will now be applied to the
recent CSSM lattice simulation results, using the fit formula:

βn = a0 + a2m
2
π + βπNn + δL[βπNn ] + βπ∆

n + δL[βπ∆
n ].

We add a linear term, a2m
2
π, to the chiral expansion, with fit

parameter a2, to account any residual curvature in the
polarisabilities.

This can account for any variation in obtaining a plateau in the
extraction of β from the lattice calculation at each value of m2

π.
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Results

Chiral extrapolation

An extrapolation at the finite box size of the lattice, L = 3 fm,
shows fairly weak chiral curvature.

Figure: Extrapolation of βn at L = 3.0 fm, corresponding to the volume of the
lightest point in m2

π. The constraint mπL > 3 is used.
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Results

Chiral extrapolation

The expectation of the lattice calculation for current and future box
sizes; boxes as large as 7 fm are required to reach within 5% of the
infinite-volume result at the physical point.

Figure: Extrapolation of βn for a variety of box sizes, including infinite volume.
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Results

Chiral extrapolation

FRR suppresses the curvature at large mπ.

The differences among the curves indicate that the lattice results
extend outside the power-counting regime.

Figure: A comparison of a variety of massless regularization schemes, and a
dipole FRR effective field theory with Λ̄scale = 0.99 GeV.
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Results

Chiral extrapolation

The final prediction of the magnetic polarisability is
βn = 1.62(11)stat(13)sys × 10−4 fm3.

Figure: Prediction of the value of βn at the physical point, at infinite volume.
The inner error bar represents the statistical uncertainty, and the outer error
bar adds the systematic uncertainty from Λ̄scale in quadrature.
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Results

Chiral extrapolation

A comparison between the prediction and the experimental results.

Figure: Prediction of the value of βn at the physical point. To distinguish the
different error bars easily, an offset is introduced among the experimental
points along the m2

π-axis.
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Conclusion and outlook

Conclusion

Lattice QCD has made significant progress in simulating uniform
magnetic fields at finite volume to obtain moments and
polarisabilities.

The correct handling of finite-volume corrections is vital for a
reliable chiral extrapolation.

A range of finite box sizes were considered, providing future lattice
QCD calculations with a benchmark in estimating the size of
finite-volume effects.

Using lattice results that extend outside the chiral power-counting
regime, an extended effective field theory using the intrinsic scale
must be used.

By correcting to infinite volume, a prediction was made for the
magnetic polarisability of the neutron at the physical point:
βn = 1.62(11)stat(13sys)× 10−4 fm3.
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Conclusion and outlook

Outlook for the future

A more precise determination of the polarizabilities from experiment
will assist in further testing the theoretical prediction.

An analysis using partially-quenched QCD contributions is also a
useful step for the future.
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Conclusion and outlook
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