

Jonathan Hall, Derek Leinweber, Ross Young

Overview Introduction χ EFT Extraploations Conclusions Appendix

Search for an Intrinsic Scale in Chiral Effective Field Theory

Jonathan Hall, Derek Leinweber, Ross Young

CSSM, University of Adelaide

4 December 2008

Overview

Jonathan Hall, Derek Leinweber, Ross Young

Overview

- Introduction χ EFT
- Extraploations
- Conclusions
- Appendix

• Introduction: 'The Challenge'

 $\bullet\,$ Chiral extrapolation of the quenched $\rho\,$ meson mass

• Quenched Chiral Effective Field Theory

- Quenched approximation lattice technique- a computational simplification
- Finite-Range Regularisation
- Power Counting Regime

• Extraploations

- Pseudodata analysis
- Properties of the renormalised expansion coefficients c_i
- Reveals a test for an intrinsic scale

Conclusions

• Created a procedure to determine a preferred range of FRR scale based on nonperturbative lattice results — without phenomenological predjudice.

'The Challenge'

Jonathan Hall, Derek Leinweber, Ross Young

Overview

Introduction

 $\chi {\rm EFT}$

Extraploations Conclusions

Appendix

- We want to predict the mass of the quenched ρ meson, m_{ρ} , at physical pion mass.
- We have quenched lattice QCD results from the Kentucky Group, excluding the results for lighter pion masses.
- We cannot rely on the experimental value of m_{ρ} because we are doing Quenched QCD (QQCD).
- What is the best way to use Chiral Effective Field Theory (χEFT) to make a prediction?

QQCD Data from the Lattice

Jonathan Hall, Derek Leinweber, Ross Young

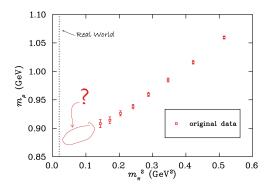
Overview Introduction

 $\chi {\sf EFT}$

Extraploations Conclusions

Appendix

- The following data from Kentucky Group is missing points close to the chiral limit $(m_q = 0)$.
- Data illustrated lies in the range $380 < m_\pi < 720$ MeV, but the missing data are as low as 200 MeV.
- Using the standard relation: $m_q \sim m_{\pi}^2$:



Jonathan Hall Derek Leinweber, Ross Young

Overview Introduction χ EFT Extraploations Conclusions

Appendix

- A perturbative quantum field theory using low-energy degrees of freedom. (mesons, baryons etc)
- General low-energy expansion formula, about chiral limit:

 $m_{\rho}^{2} = \{\text{Terms analytic in } m_{q} \} + \{\text{Chiral loop corrections}\} \\ = \{a_{0} + a_{2}m_{\pi}^{2} + a_{4}m_{\pi}^{4} + \cdots\} + \{\Sigma_{\text{total}}\}.$

- Analytic Terms :
 - To be determined via analysis of Lattice QCD results.
 - Related to the low energy constants of Chiral Perturbation Theory ($\chi {\rm PT}).$

• Chiral loops :

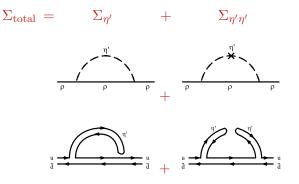
- Predict nonanalytic behaviour in the quark mass.
- Coefficients are known and are model independent.

ρ Meson Mass

Jonathan Hall, Derek Leinweber, Ross Young

Overview Introduction χ EFT Extraploations

. Conclusions Appendix In meson sector of QQCD, we consider the single and the double hairpin diagrams:



- The quenched approximation in lattice QCD means no 'disconnected loops' allowed in diagrams.
- Therefore these flavour singlet η' loops are the only contributors to the quenched m_{ρ} (to this order).

ρ Meson Mass

Jonathan Hall, Derek Leinweber, Ross Young

Introduction χ EFT Extraploations Conclusions

Appendix

Overview

• Each diagram represents a loop integral that can be evaluated using standard dimensional regularisation:

$$\Sigma_{\eta'} = \chi_3 \frac{2}{\pi} \int_0^\infty dk \, \frac{k^4}{k^2 + m_\pi^2}$$

= $\infty + \infty m_\pi^2 + \chi_3 m_\pi^3 + 0 \, m_\pi^4 + \cdots,$

$$\Sigma_{\eta'\eta'} = \chi_1 \frac{-4}{3\pi} \int_0^{\infty} dk \frac{\kappa}{(k^2 + m_{\pi}^2)^2}$$
$$= \infty + \chi_1 m_{\pi} + 0 m_{\pi}^2 + \cdots$$

ρ Meson Mass

Jonathan Hall, Derek Leinweber, Ross Young

Overview Introduction χ EFT

Extraploations Conclusions Appendix • The a_i coefficients undergo infinite renormalisation:

$$m_{\rho}^{2} = \{a_{0} + a_{2}m_{\pi}^{2} + a_{4}m_{\pi}^{4} + \cdots\} + \Sigma_{\eta'} + \Sigma_{\eta'\eta'}$$

= $c_{0} + \chi_{1}m_{\pi} + c_{2}m_{\pi}^{2} + \chi_{3}m_{\pi}^{3} + c_{4}m_{\pi}^{4} + \cdots$

- We can use Finite-Range Regularisation (FRR) to cutoff momenta at the finite scale Λ.
- Idea is to prevent large momenta from flowing through low energy effective degrees of freedom (Ultraviolet suppression for $k > \Lambda$).
- This can be done in a chiral symmetry-preserving way if desired.

Finite-Range Regularisation

Jonathan Hall, Derek Leinweber, Ross Young

Overview Introduction

 $\chi {\rm EFT}$

Extraploations Conclusions Appendix

- Loop integrals are modified to include a regulator $u^2(k) \mbox{,}$ eg:
 - Dipole form: $u(k) = \left(\frac{\Lambda^2}{\Lambda^2 + k^2}\right)^2$
 - Sharp cutoff form: $u(k) = \theta(\Lambda k)$

$$\Sigma_{\eta'} = \chi_3 \frac{2}{\pi} \int_0^\infty dk \frac{k^4 u^2(k^2)}{k^2 + m_\pi^2}$$
$$\Sigma_{\eta'\eta'} = \chi_1 \frac{-4}{3\pi} \int_0^\infty dk \frac{k^4 u^2(k^2)}{(k^2 + m_\pi^2)^2}$$

Finite-Range Renormalisation

• Integrals are be evaluated for finite Λ .

• Taylor expand the integral about the chiral limit $(m_{\pi}^2 = 0)$:

$$\Sigma_{\eta'}(k;\Lambda) = b_0^{(3)}\Lambda^3 + b_2^{(3)}\Lambda m_{\pi}^2 + \chi_3 m_{\pi}^3 + \cdots,$$

$$\Sigma_{\eta'\eta'}(k;\Lambda) = b_0^{(1)}\Lambda + \chi_1 m_{\pi} + \frac{b_2^{(1)}}{\Lambda} m_{\pi}^2 + \cdots$$

- Terms involving b_i coefficients are dependent on scale Λ .
- Note that terms $\chi_3 m_\pi^3$ and $\chi_1 m_\pi$ are independent of Λ .
- The renormalised expansion coefficients c_i are also independent of Λ :

$$m_{\rho}^{2} = (a_{0}^{\Lambda} + b_{0}^{\Lambda}) + \chi_{1}m_{\pi} + (a_{2}^{\Lambda} + b_{2}^{\Lambda})m_{\pi}^{2} + \chi_{3}m_{\pi}^{3} + \cdots$$
$$= c_{0} + \chi_{1}m_{\pi} + c_{2}m_{\pi}^{2} + \chi_{3}m_{\pi}^{3} + \cdots$$

Jonathan Hall, Derek Leinweber, Ross Young

Overview Introduction

 $\chi {\rm EFT}$

Extraploations Conclusions Appendix

Jonathan Hall, Derek Leinweber, Ross Young

Overview

Introduction

 $\chi {\rm EFT}$

Extraploations Conclusions Appendix

- Within the power-counting regime (PCR) of $\chi {\rm PT}$ $(m_\pi < 200$ MeV), higher-order terms are negligible by definition.
- Within the finite order of the expansion:
 - Terms are independent of Λ .
 - Results are independent of the regularisation scheme used.
 - FRR is mathematically equivalent to Dimensional Regularisation.
- Beyond the finite order of the expansion:
 - Terms are dependent on Λ .
 - This region lies outside the PCR.

Jonathan Hall, Derek Leinweber, Ross Young

Overview Introduction χ EFT

Extraploations Conclusions Appendix • Recall the low energy expansion:

$$m_{\rho}^2 = \{a_0^{\Lambda} + a_2^{\Lambda} m_{\pi}^2 + a_4^{\Lambda} m_{\pi}^4 + \cdots\} + \Sigma_{\eta'}^{\Lambda} + \Sigma_{\eta'\eta'}^{\Lambda}$$

- Use Chiral Effective Field Theory: calculate the self energies to see the correct curvature near chiral regime.
- \bullet Example: consider dipole form factor with $\Lambda=0.8~{\rm GeV}$.
- Choose the lightest four points to determine the a_i^{Λ} parameters.

Extrapolation of the ρ Meson Mass

Jonathan Hall, Derek Leinweber, Ross Young

Overview Introduction χ EFT

Extraploations Conclusions

Appendix

- Infinite volume extrapolation curve for dipole regulator shown.
- Non-trivial low-energy curvature improves result over a naive linear fit (eg: full QCD $m_{\rho} = 770$ MeV).



Extrapolation of the ρ Meson Mass

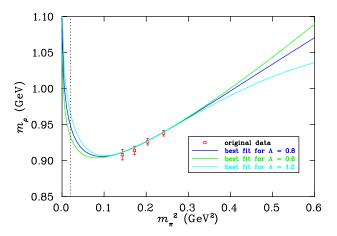
Jonathan Hall, Derek Leinweber, Ross Young

Overview Introduction χ EFT

Extraploations Conclusions

Appendix

• What if we were to choose $\Lambda=0.6$ or 1.2 GeV?



Extrapolation of the ρ Meson Mass

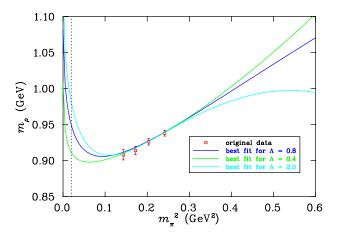
Jonathan Hall, Derek Leinweber, Ross Young

Overview Introduction χ EFT

Extraploations Conclusions

Appendix

• What if we were to choose $\Lambda=0.4$ or 2.0 GeV?



Jonathan Hall, Derek Leinweber, Ross Young

Overview Introduction χ EFT

Extraploations

Conclusions Appendix

• results are dependent on Λ .

 $\bullet\,$ Is there an intrinsic scale for Λ embedded in the data?

- To explore this idea will will create some 'pseudodata'.
- We know this artificial data has an intrinsic scale governed by the Λ_c used to create it.
- We want to graph the renormalised coefficients c_0 , c_2 , c_4 against arbitrary Λ . If the renormalisation is successful they should be constant.

$\theta(\Lambda-k)$ Regulator

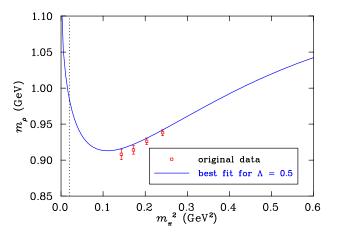
Jonathan Hall, Derek Leinweber, Ross Young

Overview Introduction χ EFT

Extraploations Conclusions

Appendix

• Pseudodata: Infinite volume extrapolation curve for sharp cutoff regulator at $\Lambda_c = 0.5$ GeV.



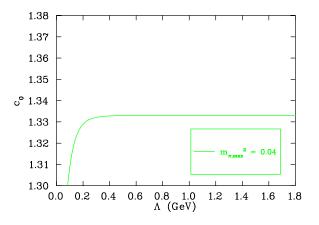
$heta(\Lambda-k)$ Regulator

Jonathan Hall, Derek Leinweber, Ross Young

Overview Introduction $\chi {\sf EFT}$

Extraploations

- Let us look at pseudodata created using the sharp cutoff regulator at $\Lambda_c = 0.5 \text{ GeV}$ for $m_{\pi,\max}^2 = 0.04 \text{ GeV}^2$.
- Pseudodata is just inside the PCR.



$\theta(\Lambda-k)$ Regulator

Jonathan Hall, Derek Leinweber, Ross Young

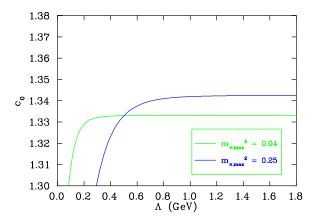
Overview Introduction χ EFT

Extraploations

Conclusions

Appendix

• Now add more data points so that $m_{\pi,\max}^2 = 0.25 \text{ GeV}^2$: outside the PCR.



$\theta(\Lambda-k)$ Regulator

Jonathan Hall, Derek Leinweber, Ross Young

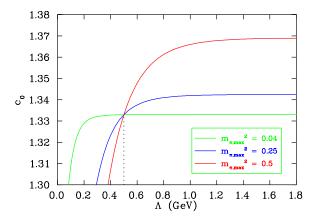
Overview Introduction χ EFT

Extraploations

Conclusions

Appendix

• Now add more data points so that $m_{\pi,\max}^2 = 0.5 \text{ GeV}^2$: further outside the PCR.

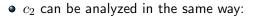


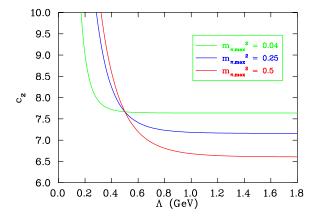
$\theta(\Lambda - k)$ Regulator

Jonathan Hall, Derek Leinweber, Ross Young

Overview Introduction $\chi {\sf EFT}$

Extraploations





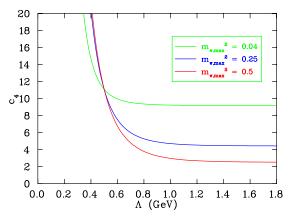
$\theta(\Lambda - k)$ Regulator

Jonathan Hall, Derek Leinweber, Ross Young

Overview Introduction χ EFT

Extraploations



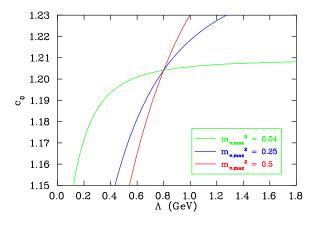


Jonathan Hall, Derek Leinweber, Ross Young

Overview Introduction $\chi {\sf EFT}$

Extraploations

- Now let's check to see if results are regulator independent.
- Consider pseudodata created using the dipole regulator, with $\Lambda_c = 0.8$ GeV. For c_0 :



Jonathan Hall, Derek Leinweber, Ross Young

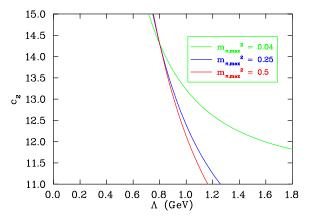
Overview Introduction χ EFT

Extraploations

Conclusions

Appendix

• For c_2 : (scale matched to the sharp cutoff analysis)



Jonathan Hall, Derek Leinweber, Ross Young

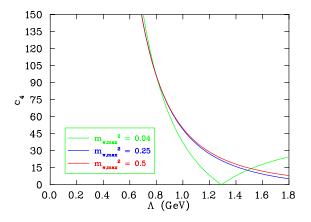
Overview Introduction χ EFT

Extraploations

Conclusions

Appendix

• c_4 is also problematic



Jonathan Hall, Derek Leinweber, Ross Young

Overview Introduction χ EFT

Extraploations

- The dipole regulator does not preserve chiral symmetry.
- There are extra A-dependent nonanalytic terms in the chiral expansion that have not been catered for in the fit.

$$\begin{split} \Sigma_{\eta'}(k;\Lambda) &= \Lambda^3 b_0^{(3)} + \Lambda b_2^{(3)} m_\pi^2 + \chi_3 m_\pi^3 \\ &+ \frac{b_4^{(3)}}{\Lambda} m_\pi^4 + \frac{b_5^{(3)}}{\Lambda^2} m_\pi^5 + \mathcal{O}(m_\pi^6) \,, \end{split}$$

$$\Sigma_{\eta'\eta'}(k;\Lambda) = \Lambda b_0^{(1)} + \chi_1 m_\pi + \frac{b_2^{(1)}}{\Lambda} m_\pi^2 + \frac{b_3^{(1)}}{\Lambda^2} m_\pi^3 + \frac{b_4^{(1)}}{\Lambda^3} m_\pi^4 + \frac{b_5^{(1)}}{\Lambda^4} m_\pi^5 + \mathcal{O}(m_\pi^6) \,.$$

Test for an Intrinsic Scale

Jonathan Hall Derek Leinweber, Ross Young

Overview Introduction χ EFT

Extraploations Conclusions

Appendix

- Choice: We could use an a_3 and an a_5 parameter to contain the contribution from these terms, or:
- Better: choose a regulator which respects chiral symmetry to finite order.
- The sharp cutoff $\theta(\Lambda-k)$ preserves chiral symmetry but finite volume is awkward.
- Let us choose something like a dipole, of the form:

$$u(k) = \left\{1 + \left(\frac{k^2}{\Lambda^2}\right)^n\right\}^{-m}$$

- Choosing n = 1 & m = 2 gives us a dipole form.
- Choosing n = 3 is sufficient to suppress the $m_{\pi}^{3,5}$ terms.
- We will call this the 'triple dipole' regulator.

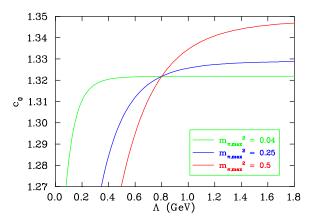
Triple Dipole Regulator

Jonathan Hall, Derek Leinweber, Ross Young

Overview Introduction χ EFT

Extraploations

Conclusions Appendix • Now consider pseudodata created using our triple dipole regulator. For *c*₀:



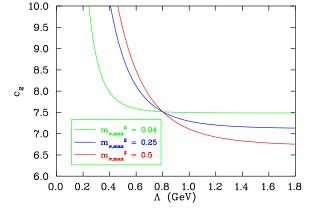
Triple Dipole Regulator

• For c_2 :

Jonathan Hall, Derek Leinweber, Ross Young

Overview Introduction χ EFT

Extraploations

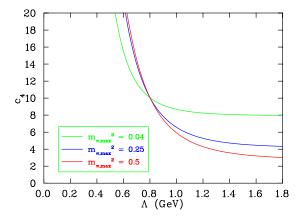


Triple Dipole Regulator

Jonathan Hall, Derek Leinweber, Ross Young

Overview Introduction χ EFT

Extraploations



Test for an Intrinsic Scale

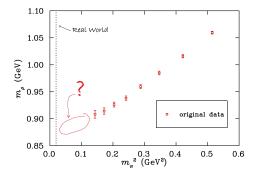
Jonathan Hall Derek Leinweber, Ross Young

Overview Introduction χ EFT

Extraploations Conclusions

 ${\sf Appendix}$

• We are now in a position to analyze the actual data using this triple dipole regulator.



 We will take the lightest four data points we have, then increase m_{π,max} by adding another data point each time.

Test for an Intrinsic Scale

Jonathan Hall, Derek Leinweber, Ross Young

Overview Introduction χ EFT

Extraploations

- The analysis is done on a finite volume box the same size as the lattice data.
- An intrinsic scale will reveal itself in the intersection points.
- Since these data are not 'perfect' pseudodata but rather have some scatter due to statistical uncertainties, the intersection point will not be unique.
- $\bullet\,$ This will give us a range of $\Lambda\,$ values.

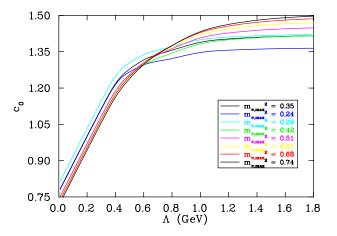
Jonathan Hall, Derek Leinweber, Ross Young

Overview Introduction χ EFT

Extraploations Conclusions

Appendix

• Intersection points for c_0 :

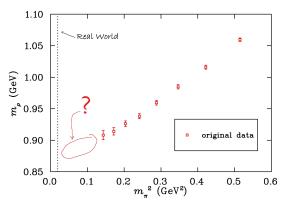


Jonathan Hall, Derek Leinweber, Ross Young

Overview Introduction χ EFT

Extraploations

Conclusions Appendix • To make these points clearer, we subtract all curves from the centre line corresponding to $m_{\pi,\max}^2 = 0.35 \text{ GeV}^2$.



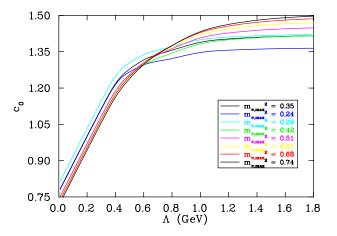
Jonathan Hall, Derek Leinweber, Ross Young

Overview Introduction χ EFT

Extraploations Conclusions

Appendix

• Intersection points for c_0 :



Jonathan Hall, Derek Leinweber, Ross Young

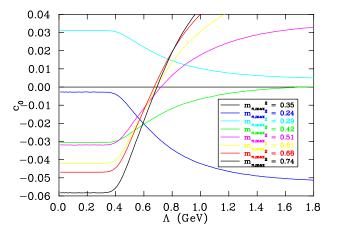
Overview Introduction χ EFT

Extraploations

Conclusions

Appendix

 $\bullet\,$ For 'modified' c_0 about the central number of data points:



Jonathan Hall, Derek Leinweber, Ross Young

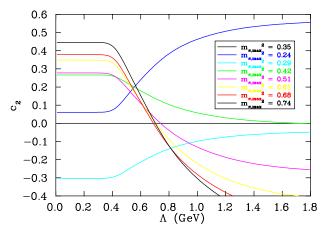
Overview Introduction χ EFT

Extraploations

Conclusions

Appendix

 $\bullet\,$ For 'modified' c_2 about the central number of data points:

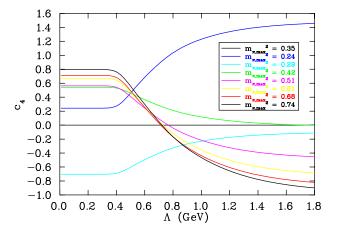


Jonathan Hall, Derek Leinweber, Ross Young

Overview Introduction χ EFT

Extraploations

Conclusions Appendix • For 'modified' c_4 about the central number of data points:

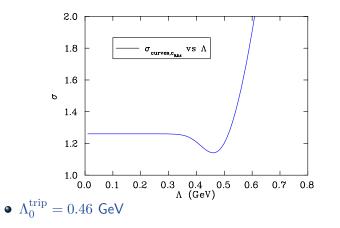


Jonathan Hall, Derek Leinweber, Ross Young

Overview Introduction χ EFT

Extraploations

- $\bullet\,$ The intrinsic scale Λ_0 is realised by the lattice data.
- Minimise the (weighted) variance with respect to the most constrained curve of $m_{\pi,\max}^2 = 0.24 \text{ GeV}^2$.



Conclusions

Jonathan Hall, Derek Leinweber, Ross Young

Overview Introduction

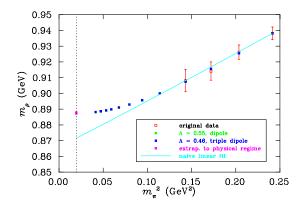
 χEFT

Extraploations

Conclusions

Appendix

- Finite volume extrapolation of m_{ρ} using triple dipole at $\Lambda_0^{\rm trip} = 0.46$ GeV.
- \bullet Try comparing the value of $\langle k^2 \rangle$ to the dipole regulator.
- Λ_0^{trip} corresponds to the dipole value of 0.55 GeV.



Conclusions

Jonathan Hall, Derek Leinweber, Ross Young

Overview Introduction

 $\chi {\sf EFT}$

Extraploations

Conclusions

Appendix

- Within the power-counting regime (PCR), a mathematical correspondence to dim. reg. is known.
- Outside the PCR, results of observables are Λ dependent. Does the data indicate a 'best value'?
- Created a procedure to determine a preferred range of FRR scale based on nonperturbative lattice results without phenomenological predjudice.
- Promises a robust scale determination procedure that will facilitate *ab initio* studies.

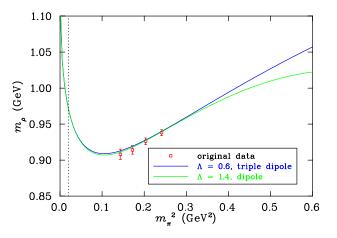
Jonathan Hall, Derek Leinweber, Ross Young

Overview Introduction χ EFT Extraploations

Conclusions

 ${\sf Appendix}$

• Choose a value of $\bar{\Lambda}_{dip}$ such that both curves match at the physical pion value:

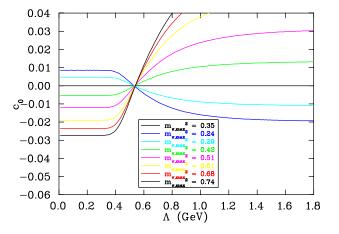


Jonathan Hall, Derek Leinweber, Ross Young

Overview Introduction χ EFT Extraploations Conclusions

Appendix

• Triple dipole analysis of pseudodata based on finite volume dipole created at $\Lambda = 0.8$ GeV. For c_0 :

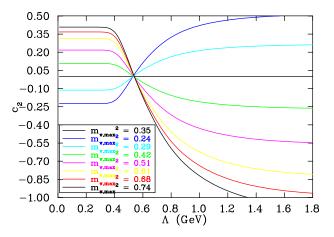


Jonathan Hall, Derek Leinweber, Ross Young

Overview Introduction χ EFT Extraploations

Conclusions

Appendix



Jonathan Hall, Derek Leinweber, Ross Young

Overview Introduction χ EFT Extraploations

Conclusions

Appendix

