Chiral Effective Field Theory in QCD

-:Jonathan Hall:-

1. Introducing Lattice QCD

=Quantum Chromodynamics (OCD) 1s a theory which

describes the interactions between the constituent particles of
nuclel and mesons: guarks.

—Quarks 1nteract via gauge fields called g/uons, and the kinds

of subatomic processes that can occur are very hard to calculate.

=Lattice OCD 1s an ab initio method for simulating difficult

QCD problems on supercomputers, using a box of discrete
momenta values.

= Although Lattice QCD i1s very successful, the computational

intensiveness means that calculations are /limited to heavy quark
masses or small box sizes.

= Thas leads to systematic errors in results, such as finite-
volume effects.

‘Aim: Use XEFT to predict the physical
mass of the c/uenc/ied 0 meson”
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4. Regularisation

= Quantum Field Theory integrals

2. Enter... Effective Field Theory

= Chiral Effective Field Theory (YXEFT) 1s a scheme which

only describes the interactions between large particles
(such as protons and quenched p mesons) at low enerey.

= We can use XEFT in conjunction with Lattice QCD to

access the light quark mass / low energy behaviour, and
calculate an observable quantity such as a particle's
physical mass.

= XEFT predicts a formula for the quenched p meson's
mass (in terms of quark mass m,, o mz):
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= The non-analytic terms (with known X-coefficients) are
obtained from the (2) integrals.

3. Meson Cloud Diagrams

= The quenched p meson 1s surrounded by a cloud of
other particles which contribute to its mass.

= The most important contributions are the single and
double hairpin n' graphs, which correspond to integrals:
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