Chiral Effective Field Theory in QCD

-: Jonathan Hall:-

1. Introducing Lattice QCD

-Quantum Chromodynamics (QCD) is a theory which describes the interactions between the constituent particles of nuclei and mesons: *quarks*.

-Quarks interact via gauge fields called *gluons*, and the kinds of subatomic processes that can occur are very hard to calculate.

-Lattice QCD is an *ab initio* method for simulating difficult QCD problems on supercomputers, using a box of discrete momenta values.

2. Enter... Effective Field Theory

- *Chiral Effective Field Theory (\chi EFT)* is a scheme which only describes the interactions between large particles (such as protons and quenched ρ mesons) at *low energy*.

- We can use χ EFT in conjunction with Lattice QCD to *access* the *light quark mass / low energy* behaviour, and calculate an observable quantity such as a particle's *physical mass*.

- χ EFT predicts a formula for the quenched ρ meson's mass (in terms of quark mass $m_q \propto m_{\pi}^2$):

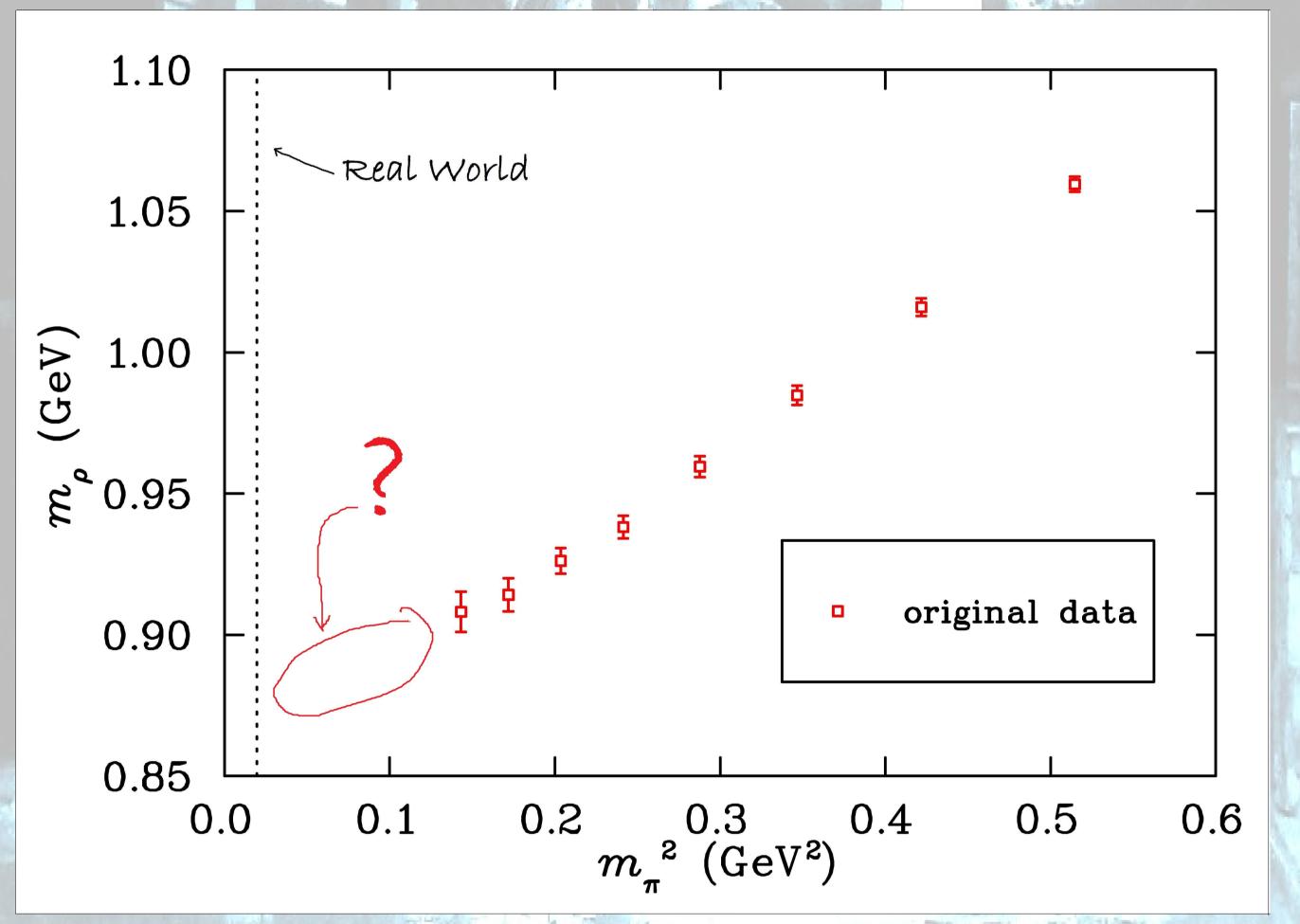
 $m_{\rho}^{2} = \{a_{0} + a_{2}m_{\pi}^{2} + a_{4}m_{\pi}^{4} + \cdots\} + \underline{\Sigma}_{\eta'} + \underline{\Sigma}_{\eta'\eta'}$

 $= c_0 + \chi_1 m_\pi + c_2 m_\pi^2 + \chi_3 m_\pi^3 + c_4 m_\pi^4 + \cdots$

- The *non-analytic* terms (with known χ -coefficients) are

- Although Lattice QCD is very successful, the computational intensiveness means that calculations are *limited* to *heavy quark masses* or *small box sizes*.
- This leads to *systematic errors* in results, such as finite-volume effects.

"Aim: Use <code>xEFT</code> to predict the physical mass of the quenched <code>p</code> meson"



3. Meson Cloud Diagrams

obtained from the (Σ) *integrals*.

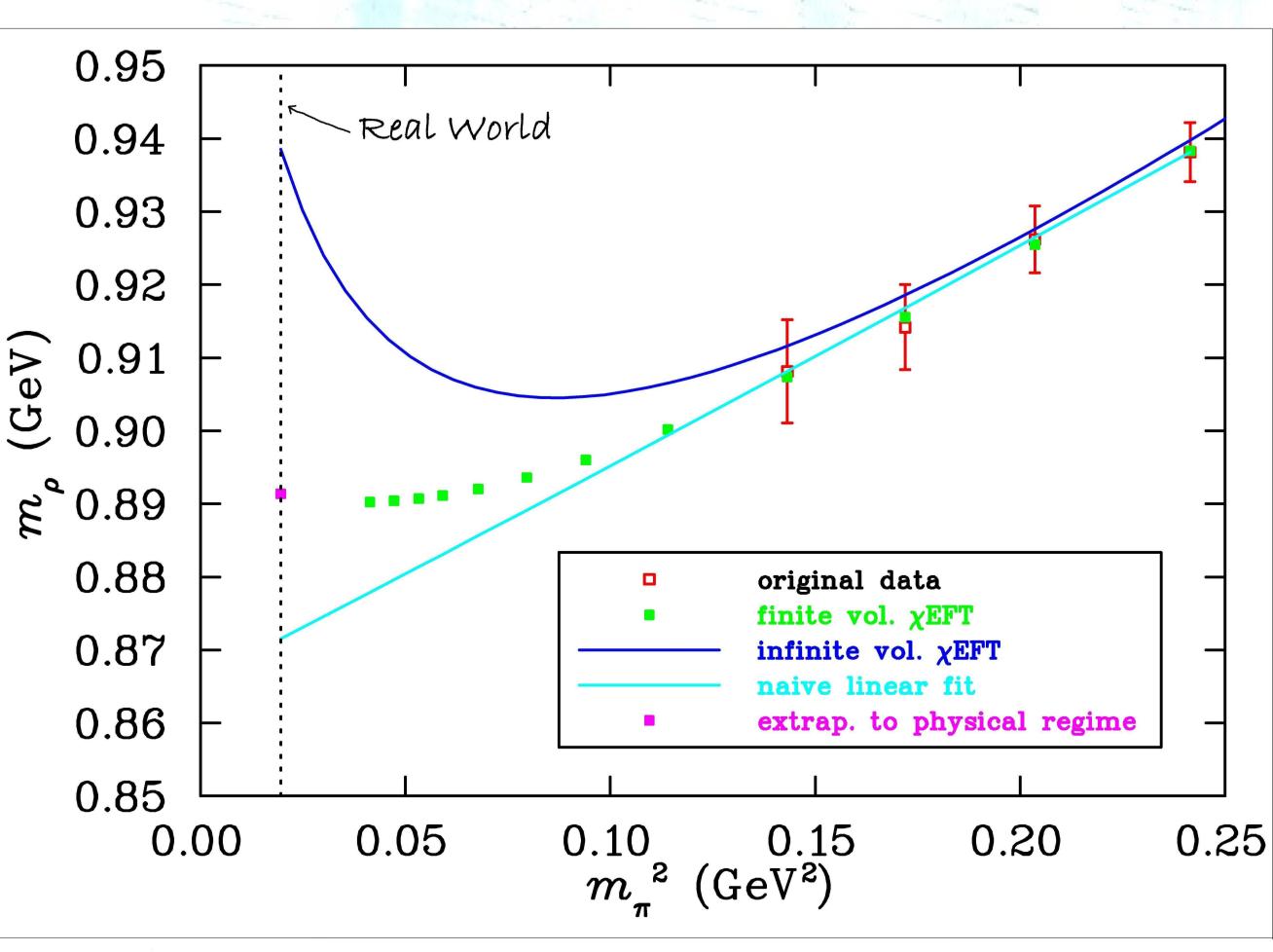
- The quenched ρ meson is surrounded by a cloud of other particles which *contribute to its mass*.
- The most important contributions are the *single* and *double hairpin* η' graphs, which correspond to *integrals*:

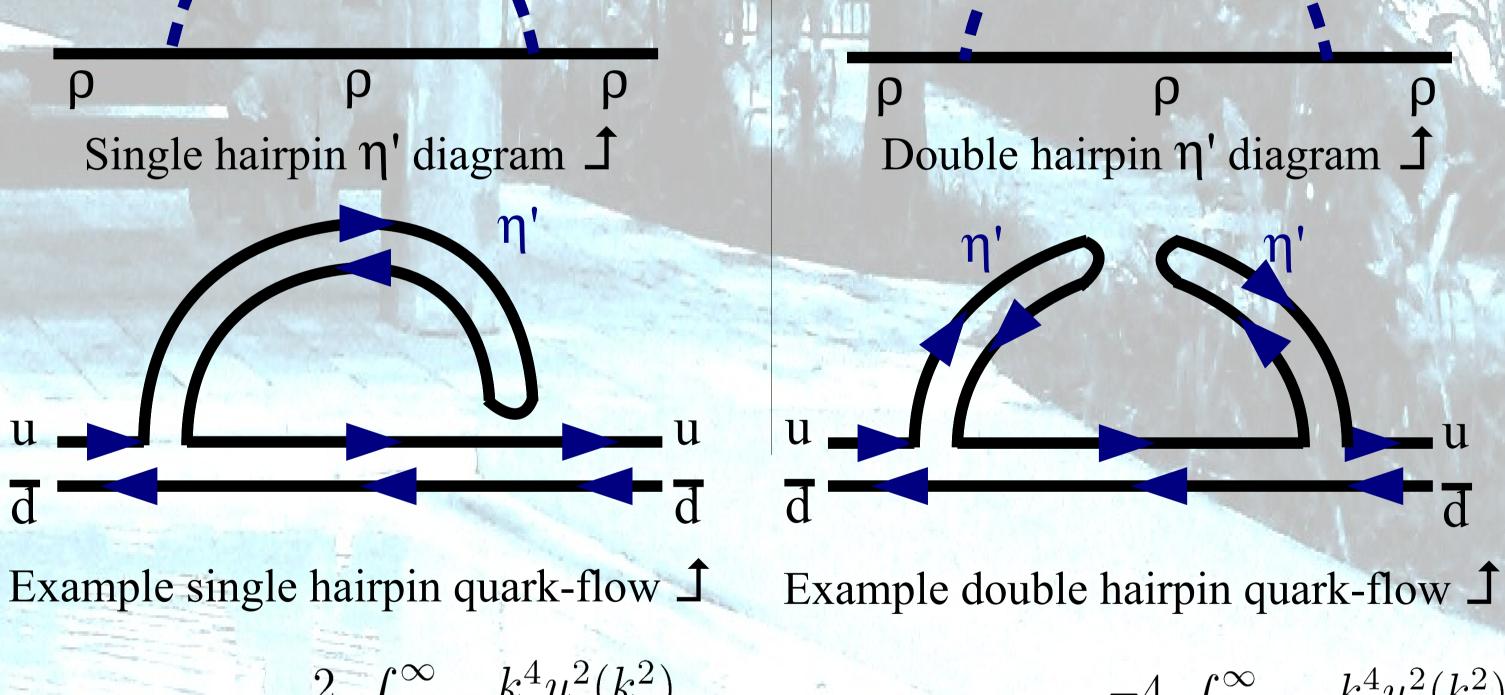
Precision quenched ρ meson mass Lattice QCD data \hat{J} from Kentucky Group, omitted low energy region shown

4. Regularisation

- Quantum Field Theory integrals are often *divergent* and *renormalisation* is required.

Therefore, a *cutoff function* $u(k^2)$ is introduced to regulate the U.V. energy region.





 $\sum_{\eta'} (m_{\pi}; \Lambda) = \chi_3 \frac{2}{\pi} \int_0^\infty dk \, \frac{k^4 u^2(k^2)}{k^2 + m_{\pi}^2} \, , \, \sum_{\eta' \eta'} (m_{\pi}; \Lambda) = \chi_1 \frac{-4}{3\pi} \int_0^\infty dk \, \frac{k^4 u^2(k^2)}{(k^2 + m_{\pi}^2)^2}$

5. Conclusion

The result obtained from
χEFT differs from the naïve fit *non-trivially*.

- We use *Finite-Range*

Regularisation, with convergence properties superior to standard techniques.

"Missing data points in the low energy region can be obtained from <code>xEFT"</code>

The lightest four data points extrapolated to the 'Real World' \mathbf{J}

- The χEFT result can also be corrected for an <i>infinite volume lattice box.

Special thanks to-

Principal Supervisor: Derek Leinweber, Co-Supervisor: Rod Crewther

SUBAT

and Ross Young (ANL, IL 60439)