Chiral Effective Field Theory Beyond the Power-Counting Regime

Jonathan Hall

11th of July, 2011 CSSM, University of Adelaide

Chiral Effective Field Theory Beyond the Power-Counting Regime

Overview

- Introduction
- Effective field theory for nucleons
 - Loop integrals
 - Renormalization
- Intrinsic scale model: pseudodata analysis
- Intrinsic scale: mass of the nucleon
- Establishing a robust method: a test example
- The magnetic moment of the nucleon
- The electric charge radius of the nucleon
- Conclusion

- Chiral Perturbation Theory describes the low-energy region, but is limited to use over a very small range of quark masses. How can we overcome this?
- Lattice Quantum Chromodynamics (QCD) is difficult to evaluate at physical quark mass, large volumes and small lattice spacings. How large is 'large enough' for a box size? We want to be able to extrapolate current results to the physical point.
- Using more of the available lattice results often entails regularization scale-dependence in extrapolations. But the lattice results themselves provide guidance on the choice of scale.
- This will lead us to realizing the presence of an intrinsic energy scale, embedded in lattice QCD results.

3 / 76

- Chiral Perturbation Theory describes the low-energy region, but is limited to use over a very small range of quark masses. How can we overcome this?
- Lattice Quantum Chromodynamics (QCD) is difficult to evaluate at physical quark mass, large volumes and small lattice spacings. How large is 'large enough' for a box size? We want to be able to extrapolate current results to the physical point.
- Using more of the available lattice results often entails regularization scale-dependence in extrapolations. But the lattice results themselves provide guidance on the choice of scale.
- This will lead us to realizing the presence of an intrinsic energy scale, embedded in lattice QCD results.

- Chiral Perturbation Theory describes the low-energy region, but is limited to use over a very small range of quark masses. How can we overcome this?
- Lattice Quantum Chromodynamics (QCD) is difficult to evaluate at physical quark mass, large volumes and small lattice spacings. How large is 'large enough' for a box size? We want to be able to extrapolate current results to the physical point.
- Using more of the available lattice results often entails regularization scale-dependence in extrapolations. But the lattice results themselves provide guidance on the choice of scale.
- This will lead us to realizing the presence of an intrinsic energy scale, embedded in lattice QCD results.

- Chiral Perturbation Theory describes the low-energy region, but is limited to use over a very small range of quark masses. How can we overcome this?
- Lattice Quantum Chromodynamics (QCD) is difficult to evaluate at physical quark mass, large volumes and small lattice spacings. How large is 'large enough' for a box size? We want to be able to extrapolate current results to the physical point.
- Using more of the available lattice results often entails regularization scale-dependence in extrapolations. But the lattice results themselves provide guidance on the choice of scale.
- This will lead us to realizing the presence of an intrinsic energy scale, embedded in lattice QCD results.

• Chiral Effective Field Theory (χ EFT) complements lattice QCD.

- It assists in understanding the consequences of dynamical chiral symmetry breaking.
- It provides a scheme-independent approach for investigating the properties of hadrons.
- In particular, it can be used in conjunction with lattice QCD results to extrapolate:
 - to physical quark mass,
 - to infinite lattice volume and the continuum limit.

- Chiral Effective Field Theory (χ EFT) complements lattice QCD.
- It assists in understanding the consequences of dynamical chiral symmetry breaking.
- It provides a scheme-independent approach for investigating the properties of hadrons.
- In particular, it can be used in conjunction with lattice QCD results to extrapolate:
 - to physical quark mass,
 - to infinite lattice volume and the continuum limit.

- Chiral Effective Field Theory (χ EFT) complements lattice QCD.
- It assists in understanding the consequences of dynamical chiral symmetry breaking.
- It provides a scheme-independent approach for investigating the properties of hadrons.
- In particular, it can be used in conjunction with lattice QCD results to extrapolate:
 - to physical quark mass,
 - to infinite lattice volume and the continuum limit.

- Chiral Effective Field Theory (χ EFT) complements lattice QCD.
- It assists in understanding the consequences of dynamical chiral symmetry breaking.
- It provides a scheme-independent approach for investigating the properties of hadrons.
- In particular, it can be used in conjunction with lattice QCD results to extrapolate:
 - to physical quark mass,
 - to infinite lattice volume and the continuum limit.

- Chiral Effective Field Theory (χ EFT) complements lattice QCD.
- It assists in understanding the consequences of dynamical chiral symmetry breaking.
- It provides a scheme-independent approach for investigating the properties of hadrons.
- In particular, it can be used in conjunction with lattice QCD results to extrapolate:
 - to physical quark mass,
 - to infinite lattice volume and the continuum limit.

- Chiral Effective Field Theory (χ EFT) complements lattice QCD.
- It assists in understanding the consequences of dynamical chiral symmetry breaking.
- It provides a scheme-independent approach for investigating the properties of hadrons.
- In particular, it can be used in conjunction with lattice QCD results to extrapolate:
 - to physical quark mass,
 - to infinite lattice volume and the continuum limit.

- Chiral Perturbation Theory (χ PT) is a low-energy theory where gluons and quarks can be replaced by effective degrees of freedom.
- χPT provides a formal expansion in terms of low-energy quark masses and momenta.
- The expansion is convergent if the quark masses and momenta are small enough so that higher-order terms are negligible. This is called the Power-Counting Regime (PCR).
- Within the PCR, χ PT is renormalization scale-independent, and can be used to connect lattice simulations to the real world.
- Outside the PCR, χ PT is, in general, scale-dependent, and care must be taken.
- Note: Here, we use ' χ PT' to mean a massless renormalization scheme is used, but ' χ EFT' allows different kinds of scheme.

5 / 76

- Chiral Perturbation Theory (χ PT) is a low-energy theory where gluons and quarks can be replaced by effective degrees of freedom.
- χPT provides a formal expansion in terms of low-energy quark masses and momenta.
- The expansion is convergent if the quark masses and momenta are small enough so that higher-order terms are negligible. This is called the Power-Counting Regime (PCR).
- Within the PCR, χ PT is renormalization scale-independent, and can be used to connect lattice simulations to the real world.
- Outside the PCR, χ PT is, in general, scale-dependent, and care must be taken.
- Note: Here, we use ' χ PT' to mean a massless renormalization scheme is used, but ' χ EFT' allows different kinds of scheme.

- Chiral Perturbation Theory (χ PT) is a low-energy theory where gluons and quarks can be replaced by effective degrees of freedom.
- χPT provides a formal expansion in terms of low-energy quark masses and momenta.
- The expansion is convergent if the quark masses and momenta are small enough so that higher-order terms are negligible. This is called the Power-Counting Regime (PCR).
- Within the PCR, χ PT is renormalization scale-independent, and can be used to connect lattice simulations to the real world.
- Outside the PCR, χ PT is, in general, scale-dependent, and care must be taken.
- Note: Here, we use ' χ PT' to mean a massless renormalization scheme is used, but ' χ EFT' allows different kinds of scheme.

- Chiral Perturbation Theory (χ PT) is a low-energy theory where gluons and quarks can be replaced by effective degrees of freedom.
- χPT provides a formal expansion in terms of low-energy quark masses and momenta.
- The expansion is convergent if the quark masses and momenta are small enough so that higher-order terms are negligible. This is called the Power-Counting Regime (PCR).
- Within the PCR, χ PT is renormalization scale-independent, and can be used to connect lattice simulations to the real world.
- Outside the PCR, χ PT is, in general, scale-dependent, and care must be taken.
- Note: Here, we use ' χ PT' to mean a massless renormalization scheme is used, but ' χ EFT' allows different kinds of scheme.

- Chiral Perturbation Theory (χ PT) is a low-energy theory where gluons and quarks can be replaced by effective degrees of freedom.
- χPT provides a formal expansion in terms of low-energy quark masses and momenta.
- The expansion is convergent if the quark masses and momenta are small enough so that higher-order terms are negligible. This is called the Power-Counting Regime (PCR).
- Within the PCR, χ PT is renormalization scale-independent, and can be used to connect lattice simulations to the real world.
- Outside the PCR, χ PT is, in general, scale-dependent, and care must be taken.
- Note: Here, we use ' χ PT' to mean a massless renormalization scheme is used, but ' χ EFT' allows different kinds of scheme.

- Chiral Perturbation Theory (χ PT) is a low-energy theory where gluons and quarks can be replaced by effective degrees of freedom.
- χPT provides a formal expansion in terms of low-energy quark masses and momenta.
- The expansion is convergent if the quark masses and momenta are small enough so that higher-order terms are negligible. This is called the Power-Counting Regime (PCR).
- Within the PCR, χ PT is renormalization scale-independent, and can be used to connect lattice simulations to the real world.
- Outside the PCR, χ PT is, in general, scale-dependent, and care must be taken.
- Note: Here, we use ' χ PT' to mean a massless renormalization scheme is used, but ' χ EFT' allows different kinds of scheme.

The PCR: Nucleon Mass

- The PCR is small; lattice results often extend outside the PCR.
- Example: The leading-order low-energy coefficients are held fixed for different regularization scales:

- For an effective field theory, one writes out a low-energy effective Lagrangian.
- The terms of the Lagrangian are ordered in powers of momenta and mass.
- For nucleons (fermions) written as an SU(2) doublet $\psi = (p \ n)^{T}$, the relevant Lagrangian at $\mathcal{O}(p^{4})$ takes the form:

$$\mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{tad}^{(2)} = \bar{\psi} \left(\partial - \overset{\circ}{M}_{N} + \frac{\overset{\circ}{g}_{A}}{2f_{\pi}} \gamma^{\mu} \gamma_{5} \vec{\tau} \cdot \partial_{\mu} \vec{\pi} \right) \psi + c_{2} \mathrm{Tr}[\mathcal{M}_{+}] \bar{\psi} \psi \,.$$

- For an effective field theory, one writes out a low-energy effective Lagrangian.
- The terms of the Lagrangian are ordered in powers of momenta and mass.
- For nucleons (fermions) written as an SU(2) doublet $\psi = (p \ n)^{T}$, the relevant Lagrangian at $\mathcal{O}(p^{4})$ takes the form:

$$\mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{tad}^{(2)} = \bar{\psi} \left(\partial - \overset{\circ}{M}_{N} + \frac{\overset{\circ}{g}_{A}}{2f_{\pi}} \gamma^{\mu} \gamma_{5} \vec{\tau} \cdot \partial_{\mu} \vec{\pi} \right) \psi + c_{2} \mathrm{Tr}[\mathcal{M}_{+}] \bar{\psi} \psi \,.$$

• The circle \circ denotes a "bare" quantity: it becomes renormalized by chiral loops from the field theory. Let's look at the nucleon mass M_N ...

8 / 76

- For an effective field theory, one writes out a low-energy effective Lagrangian.
- The terms of the Lagrangian are ordered in powers of momenta and mass.
- For nucleons (fermions) written as an SU(2) doublet $\psi = (p \ n)^{T}$, the relevant Lagrangian at $\mathcal{O}(p^{4})$ takes the form:

$$\mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{tad}^{(2)} = \bar{\psi} \left(\oint - \stackrel{\circ}{M}_{N} + \frac{\stackrel{\circ}{g}_{A}}{2f_{\pi}} \gamma^{\mu} \gamma_{5} \vec{\tau} \cdot \partial_{\mu} \vec{\pi} \right) \psi + c_{2} \mathrm{Tr}[\mathcal{M}_{+}] \bar{\psi} \psi \,.$$

- For an effective field theory, one writes out a low-energy effective Lagrangian.
- The terms of the Lagrangian are ordered in powers of momenta and mass.
- For nucleons (fermions) written as an SU(2) doublet $\psi = (p \ n)^{T}$, the relevant Lagrangian at $\mathcal{O}(p^{4})$ takes the form:

$$\mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{tad}^{(2)} = \bar{\psi} \left(\partial - \overset{\circ}{M}_{N} + \frac{\overset{\circ}{g}_{A}}{2f_{\pi}} \gamma^{\mu} \gamma_{5} \vec{\tau} \cdot \partial_{\mu} \vec{\pi} \right) \psi + c_{2} \mathrm{Tr}[\mathcal{M}_{+}] \bar{\psi} \psi \,.$$

- For an effective field theory, one writes out a low-energy effective Lagrangian.
- The terms of the Lagrangian are ordered in powers of momenta and mass.
- For nucleons (fermions) written as an SU(2) doublet $\psi = (p \ n)^{T}$, the relevant Lagrangian at $\mathcal{O}(p^{4})$ takes the form:

$$\mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{tad}^{(2)} = \bar{\psi} \left(\partial - \overset{\circ}{M}_{N} + \frac{\overset{\circ}{g}_{A}}{2f_{\pi}} \gamma^{\mu} \gamma_{5} \vec{\tau} \cdot \partial_{\mu} \vec{\pi} \right) \psi + c_{2} \mathrm{Tr}[\mathcal{M}_{+}] \bar{\psi} \psi \,.$$

- Using the Gell-Mann–Oakes–Renner Relation, $m_q \propto m_\pi^2$, the nucleon mass M_N is renormalized by:
- $M_N = \{ \text{terms analytic in } m_\pi^2 \} + \{ \text{chiral loop corrections} \} \\ = \{ a_0 + a_2 m_\pi^2 + a_4 m_\pi^4 + \mathcal{O}(m_\pi^6) \} + \{ \Sigma_{\text{loops}} \} .$
- The analytic coefficients *a_i* of the 'residual series' will be determined by fitting to lattice QCD results.
- The chiral loops have known, scale-independent coefficients, but given rise to non-analytic behaviour.

9 / 76

• Using the Gell-Mann–Oakes–Renner Relation, $m_q \propto m_{\pi}^2$, the nucleon mass M_N is renormalized by:

$$M_{N} = \{ \text{terms analytic in } m_{\pi}^{2} \} + \{ \text{chiral loop corrections} \} \\ = \{ a_{0} + a_{2}m_{\pi}^{2} + a_{4}m_{\pi}^{4} + \mathcal{O}(m_{\pi}^{6}) \} + \{ \Sigma_{\text{loops}} \} .$$

- The analytic coefficients *a_i* of the 'residual series' will be determined by fitting to lattice QCD results.
- The chiral loops have known, scale-independent coefficients, but given rise to non-analytic behaviour.

9 / 76

• Using the Gell-Mann–Oakes–Renner Relation, $m_q \propto m_{\pi}^2$, the nucleon mass M_N is renormalized by:

$$M_{N} = \{ \text{terms analytic in } m_{\pi}^{2} \} + \{ \text{chiral loop corrections} \} \\ = \{ a_{0} + a_{2}m_{\pi}^{2} + a_{4}m_{\pi}^{4} + \mathcal{O}(m_{\pi}^{6}) \} + \{ \Sigma_{\text{loops}} \} .$$

- The analytic coefficients *a_i* of the 'residual series' will be determined by fitting to lattice QCD results.
- The chiral loops have known, scale-independent coefficients, but given rise to non-analytic behaviour.

• Using the Gell-Mann–Oakes–Renner Relation, $m_q \propto m_{\pi}^2$, the nucleon mass M_N is renormalized by:

$$M_{N} = \{ \text{terms analytic in } m_{\pi}^{2} \} + \{ \text{chiral loop corrections} \} \\ = \{ a_{0} + a_{2}m_{\pi}^{2} + a_{4}m_{\pi}^{4} + \mathcal{O}(m_{\pi}^{6}) \} + \{ \Sigma_{\text{loops}} \} .$$

- The analytic coefficients *a_i* of the 'residual series' will be determined by fitting to lattice QCD results.
- The chiral loops have known, scale-independent coefficients, but given rise to non-analytic behaviour.

EFT for Nucleons

Chiral Loops: Heavy Baryon Limit

Chiral Effective Field Theory Beyond the Power-Counting Regime

EFT for Nucleons

 Note: each integral expansion has an analytic polynomial, involving b_i(Λ), and non-analytic terms.

• How does the renormalization take place?

Consider the 1-pion loop integral as a test example:

Chiral Effective Field Theory Beyond the Power-Counting Regime

How does the renormalization take place?
Consider the 1-pion loop integral as a test example:

Chiral Effective Field Theory Beyond the Power-Counting Regime

How does the renormalization take place?
Consider the 1-pion loop integral as a test example:

How does the renormalization take place?
Consider the 1-pion loop integral as a test example:

How does the renormalization take place?
Consider the 1-pion loop integral as a test example:

In a massless renormalization scheme, there is no explicit momentum cutoff, so each of the a_i coefficients undergoes an infinite renormalization or none at all:

$$c_0 = a_0 + \frac{2\chi_N}{\pi} \int_0^\infty \mathrm{d}k \, k^2 \,,$$

$$c_2 = a_2 - \frac{2\chi_N}{\pi} \int_0^\infty \mathrm{d}k \,,$$

 $c_4 = a_4 + 0$, etc.

 In a massless renormalization scheme, there is no explicit momentum cutoff, so each of the a_i coefficients undergoes an infinite renormalization or none at all:

$$c_0 = a_0 + \frac{2\chi_N}{\pi} \int_0^\infty \mathrm{d}k \, k^2 \,,$$

$$c_2 = a_2 - \frac{2\chi_N}{\pi} \int_0^\infty \mathrm{d}k \,,$$

 $c_4 = a_4 + 0$, etc.

 In a massless renormalization scheme, there is no explicit momentum cutoff, so each of the a_i coefficients undergoes an infinite renormalization or none at all:

$$c_0 = a_0 + \frac{2\chi_N}{\pi} \int_0^\infty dk \, k^2 ,$$

$$c_2 = a_2 - \frac{2\chi_N}{\pi} \int_0^\infty dk ,$$

 $c_4 = a_4 + 0$, etc.

Chiral Effective Field Theory Beyond the Power-Counting Regime

 In a massless renormalization scheme, there is no explicit momentum cutoff, so each of the a_i coefficients undergoes an infinite renormalization or none at all:

$$c_0 = a_0 + \frac{2\chi_N}{\pi} \int_0^\infty \mathrm{d}k \, k^2 \,,$$

$$c_2 = a_2 - \frac{2\chi_N}{\pi} \int_0^\infty \mathrm{d}k \,,$$

$$c_4 = a_4 + 0$$
, etc.

- In Finite-Range Regularization (FRR), a finite momentum cutoff Λ is introduced (via a regulator function), and the chiral expansion is resummed.
- For a sharp cutoff regulator:

$$\Sigma_{N}(\Lambda) = \frac{2\chi_{N}}{\pi} \int_{0}^{\Lambda} dk \frac{k^{4}}{k^{2} + m_{\pi}^{2}}$$
$$= \frac{2\chi_{N}}{\pi} \left(\frac{\Lambda^{3}}{3} - \Lambda m_{\pi}^{2} + m_{\pi}^{3} \arctan\left[\frac{\Lambda}{m_{\pi}}\right] \right)$$
$$= \frac{2\chi_{N}}{\pi} \frac{\Lambda^{3}}{3} - \frac{2\chi_{N}}{\pi} \Lambda m_{\pi}^{2} + \chi_{N} m_{\pi}^{3} - \frac{2\chi_{N}}{\pi} \frac{1}{\Lambda} m_{\pi}^{4} + \cdots$$

- In Finite-Range Regularization (FRR), a finite momentum cutoff Λ is introduced (via a regulator function), and the chiral expansion is resummed.
- For a sharp cutoff regulator:

$$\Sigma_{N}(\Lambda) = \frac{2\chi_{N}}{\pi} \int_{0}^{\Lambda} dk \frac{k^{4}}{k^{2} + m_{\pi}^{2}}$$
$$= \frac{2\chi_{N}}{\pi} \left(\frac{\Lambda^{3}}{3} - \Lambda m_{\pi}^{2} + m_{\pi}^{3} \arctan\left[\frac{\Lambda}{m_{\pi}}\right] \right)$$
$$= \frac{2\chi_{N}}{\pi} \frac{\Lambda^{3}}{3} - \frac{2\chi_{N}}{\pi} \Lambda m_{\pi}^{2} + \chi_{N} m_{\pi}^{3} - \frac{2\chi_{N}}{\pi} \frac{1}{\Lambda} m_{\pi}^{4} + \cdots$$

- In Finite-Range Regularization (FRR), a finite momentum cutoff Λ is introduced (via a regulator function), and the chiral expansion is resummed.
- For a sharp cutoff regulator:

$$\Sigma_{N}(\Lambda) = \frac{2\chi_{N}}{\pi} \int_{0}^{\Lambda} dk \frac{k^{4}}{k^{2} + m_{\pi}^{2}}$$
$$= \frac{2\chi_{N}}{\pi} \left(\frac{\Lambda^{3}}{3} - \Lambda m_{\pi}^{2} + m_{\pi}^{3} \arctan\left[\frac{\Lambda}{m_{\pi}}\right] \right)$$
$$= \frac{2\chi_{N}}{\pi} \frac{\Lambda^{3}}{3} - \frac{2\chi_{N}}{\pi} \Lambda m_{\pi}^{2} + \chi_{N} m_{\pi}^{3} - \frac{2\chi_{N}}{\pi} \frac{1}{\Lambda} m_{\pi}^{4} + \cdots$$

- In Finite-Range Regularization (FRR), a finite momentum cutoff Λ is introduced (via a regulator function), and the chiral expansion is resummed.
- For a sharp cutoff regulator:

$$\Sigma_{N}(\Lambda) = \frac{2\chi_{N}}{\pi} \int_{0}^{\Lambda} dk \frac{k^{4}}{k^{2} + m_{\pi}^{2}}$$
$$= \frac{2\chi_{N}}{\pi} \left(\frac{\Lambda^{3}}{3} - \Lambda m_{\pi}^{2} + m_{\pi}^{3} \arctan\left[\frac{\Lambda}{m_{\pi}}\right] \right)$$
$$= \frac{2\chi_{N}}{\pi} \frac{\Lambda^{3}}{3} - \frac{2\chi_{N}}{\pi} \Lambda m_{\pi}^{2} + \chi_{N} m_{\pi}^{3} - \frac{2\chi_{N}}{\pi} \frac{\Lambda}{\Lambda} m_{\pi}^{4} + \cdots$$

- In Finite-Range Regularization (FRR), a finite momentum cutoff Λ is introduced (via a regulator function), and the chiral expansion is resummed.
- For a sharp cutoff regulator:

$$\Sigma_N(\Lambda) = \frac{2\chi_N}{\pi} \int_0^{\Lambda} dk \frac{k^4}{k^2 + m_\pi^2}$$

= $\frac{2\chi_N}{\pi} \left(\frac{\Lambda^3}{3} - \Lambda m_\pi^2 + m_\pi^3 \arctan\left[\frac{\Lambda}{m_\pi}\right] \right)$
= $\frac{2\chi_N}{\pi} \frac{\Lambda^3}{3} - \frac{2\chi_N}{\pi} \Lambda m_\pi^2 + \chi_N m_\pi^3 - \frac{2\chi_N}{\pi} \frac{1}{\Lambda} m_\pi^4 + \cdots$

• The massless renormalization scheme result is recovered as $\Lambda \to \infty.$

$$c_{0} = a_{0} + \frac{2\chi_{N}}{3}\Lambda^{3},$$

$$c_{2} = a_{2} - \frac{2\chi_{N}}{\pi}\Lambda,$$

$$c_{4} = a_{4} - \frac{2\chi_{N}}{\pi}\frac{1}{\Lambda}, \text{ etc}$$

 The scale-dependence of the a_i's exactly compensates the scale-dependence of the b_i's, so each c_i is scale-independent, even at finite Λ.

• The massless renormalization scheme result is recovered as $\Lambda \to \infty$.

$$c_0 = a_0 + \frac{2\chi_N}{3}\Lambda^3,$$

$$c_2 = a_2 - \frac{2\chi_N}{\pi}\Lambda,$$

$$c_4 = a_4 - rac{2\chi_N}{\pi}rac{1}{\Lambda}, ext{ etc.}$$

 The scale-dependence of the a_i's exactly compensates the scale-dependence of the b_i's, so each c_i is scale-independent, even at finite Λ.

• The massless renormalization scheme result is recovered as $\Lambda \to \infty$.

$$c_0 = a_0 + \frac{2\chi_N}{3}\Lambda^3,$$

$$c_2 = a_2 - \frac{2\chi_N}{\pi}\Lambda,$$

$$c_4 = a_4 - \frac{2\chi_N}{\pi} \frac{1}{\Lambda}$$
, etc.

 The scale-dependence of the a_i's exactly compensates the scale-dependence of the b_i's, so each c_i is scale-independent, even at finite Λ.

• The massless renormalization scheme result is recovered as $\Lambda \to \infty$.

$$c_{0} = a_{0} + \frac{2\chi_{N}}{3}\Lambda^{3},$$

$$c_{2} = a_{2} - \frac{2\chi_{N}}{\pi}\Lambda,$$

$$c_{4} = a_{4} - \frac{2\chi_{N}}{\pi}\frac{1}{\Lambda}, \text{ etc.}$$

 The scale-dependence of the a_i's exactly compensates the scale-dependence of the b_i's, so each c_i is scale-independent, even at finite Λ.

• The massless renormalization scheme result is recovered as $\Lambda \to \infty$.

$$c_{0} = a_{0} + \frac{2\chi_{N}}{3}\Lambda^{3},$$

$$c_{2} = a_{2} - \frac{2\chi_{N}}{\pi}\Lambda,$$

$$c_{4} = a_{4} - \frac{2\chi_{N}}{\pi}\frac{1}{\Lambda}, \text{ etc.}$$

 The scale-dependence of the a_i's exactly compensates the scale-dependence of the b_i's, so each c_i is scale-independent, even at finite Λ.

- The coefficients χ_N , $\chi_\Delta \& \chi'_t$ are known, scale-independent parameters (related to g_A , f_π , etc).
- The coefficients $b_i(\Lambda)$ however, are scale-dependent, but they occur at the relevant chiral orders to renormalize the residual series:

$$\begin{array}{rcl} c_0 & = & a_0 + b_0^N + b_0^{\Delta} \ , \\ c_2 & = & a_2 + b_2^N + b_2^{\Delta} + b_2^{t'} \ , \\ c_4 & = & a_4 + b_4^N + b_4^{\Delta} + b_4^{t'} \ , \ {\rm etc} \end{array}$$

- These renormalized coefficients c_i are scale-independent.
- The following expansion will also take into account finite-volume corrections:

$$M_N = c_0 + c_2 m_\pi^2 + \chi_N m_\pi^3 + c_4 m_\pi^4 + \left(-\frac{3}{4\pi\Delta} \chi_\Delta + \chi_t' \right) m_\pi^4 \log \frac{m_\pi}{\mu} + \mathcal{O}(m_\pi^5) .$$

nting Regime

- The coefficients χ_N , $\chi_\Delta \& \chi'_t$ are known, scale-independent parameters (related to g_A , f_π , etc).
- The coefficients $b_i(\Lambda)$ however, are scale-dependent, but they occur at the relevant chiral orders to renormalize the residual series:

$$\begin{array}{rcl} c_0 &=& a_0 + b_0^N + b_0^\Delta \,, \\ c_2 &=& a_2 + b_2^N + b_2^\Delta + b_2^{t'} \,, \\ c_4 &=& a_4 + b_4^N + b_4^\Delta + b_4^{t'} \,, \ \mathrm{etc} \end{array}$$

- These renormalized coefficients c_i are scale-independent.
- The following expansion will also take into account finite-volume corrections:

$$M_N = c_0 + c_2 m_\pi^2 + \chi_N m_\pi^3 + c_4 m_\pi^4 + \left(-\frac{3}{4\pi\Delta} \chi_\Lambda + \chi_t' \right) m_\pi^4 \log \frac{m_\pi}{\mu} + \mathcal{O}(m_\pi^5) .$$

nting Regime

- The coefficients χ_N , $\chi_\Delta \& \chi'_t$ are known, scale-independent parameters (related to g_A , f_π , etc).
- The coefficients $b_i(\Lambda)$ however, are scale-dependent, but they occur at the relevant chiral orders to renormalize the residual series:

$$c_0 = a_0 + b_0^N + b_0^\Delta,$$

$$c_2 = a_2 + b_2^N + b_2^\Delta + b_2^{t'},$$

$$c_4 = a_4 + b_4^N + b_4^\Delta + b_4^{t'}, \text{ etc}$$

- These renormalized coefficients c_i are scale-independent.
- The following expansion will also take into account finite-volume corrections:

$$M_N = c_0 + c_2 m_\pi^2 + \chi_N m_\pi^3 + c_4 m_\pi^4 + \left(-\frac{3}{4\pi\Delta} \chi_\Delta + \chi_t' \right) m_\pi^4 \log \frac{m_\pi}{\mu} + \mathcal{O}(m_\pi^5) .$$

ting Regime

- The coefficients χ_N , $\chi_\Delta \& \chi'_t$ are known, scale-independent parameters (related to g_A , f_π , etc).
- The coefficients $b_i(\Lambda)$ however, are scale-dependent, but they occur at the relevant chiral orders to renormalize the residual series:

$$\begin{array}{rcl} c_0 & = & a_0 + b_0^N + b_0^\Delta \, , \\ c_2 & = & a_2 + b_2^N + b_2^\Delta + b_2^{t'} \, , \\ c_4 & = & a_4 + b_4^N + b_4^\Delta + b_4^{t'} \, , \ {\rm etc} \end{array}$$

- These renormalized coefficients c_i are scale-independent.
- The following expansion will also take into account finite-volume corrections:

$$M_{N} = c_{0} + c_{2}m_{\pi}^{2} + \chi_{N}m_{\pi}^{3} + c_{4}m_{\pi}^{4} + \left(-\frac{3}{4\pi\Delta}\chi_{\Lambda} + \chi_{t}'\right)m_{\pi}^{4}\log\frac{m_{\pi}}{\mu} + \mathcal{O}(m_{\pi}^{5}).$$
Chiral Effective Field Theory Bayond the Power-Course

nting Regime

- The coefficients χ_N , $\chi_\Delta \& \chi'_t$ are known, scale-independent parameters (related to g_A , f_π , etc).
- The coefficients $b_i(\Lambda)$ however, are scale-dependent, but they occur at the relevant chiral orders to renormalize the residual series:

$$\begin{array}{rcl} c_0 &=& a_0 + b_0^N + b_0^\Delta \,, \\ c_2 &=& a_2 + b_2^N + b_2^\Delta + b_2^{t'} \,, \\ c_4 &=& a_4 + b_4^N + b_4^\Delta + b_4^{t'} \,, \ \text{etc} \end{array}$$

- These renormalized coefficients c_i are scale-independent.
- The following expansion will also take into account finite-volume corrections:

$$M_{N} = c_{0} + c_{2}m_{\pi}^{2} + \chi_{N}m_{\pi}^{3} + c_{4}m_{\pi}^{4} + \left(-\frac{3}{4\pi\Delta}\chi_{\Lambda} + \chi_{t}'\right)m_{\pi}^{4}\log\frac{m_{\pi}}{\mu} + \mathcal{O}(m_{\pi}^{5}).$$
Chiral Effective Eigld Theory Beyond the Power-Cou

ting Regime

- The coefficients χ_N , $\chi_\Delta \& \chi'_t$ are known, scale-independent parameters (related to g_A , f_π , etc).
- The coefficients $b_i(\Lambda)$ however, are scale-dependent, but they occur at the relevant chiral orders to renormalize the residual series:

$$c_0 = a_0 + b_0^N + b_0^\Delta ,$$

$$c_2 = a_2 + b_2^N + b_2^\Delta + b_2^{t'} ,$$

$$c_4 = a_4 + b_4^N + b_4^\Delta + b_4^{t'} , \text{ etc}$$

- These renormalized coefficients c_i are scale-independent.
- The following expansion will also take into account finite-volume corrections:

$$\mathcal{A}_{N} = c_{0} + c_{2}m_{\pi}^{2} + \chi_{N}m_{\pi}^{3} + c_{4}m_{\pi}^{4} + \left(-\frac{3}{4\pi\Delta}\chi_{\Delta} + \chi_{\pm}'\right)m_{\pi}^{4}\log\frac{m_{\pi}}{\mu} + \mathcal{O}(m_{\pi}^{5}).$$

nting Regime

- The coefficients χ_N , $\chi_\Delta \& \chi'_t$ are known, scale-independent parameters (related to g_A , f_π , etc).
- The coefficients $b_i(\Lambda)$ however, are scale-dependent, but they occur at the relevant chiral orders to renormalize the residual series:

$$c_0 = a_0 + b_0^N + b_0^\Delta ,$$

$$c_2 = a_2 + b_2^N + b_2^\Delta + b_2^{t'} ,$$

$$c_4 = a_4 + b_4^N + b_4^\Delta + b_4^{t'} , \text{ etc}$$

- These renormalized coefficients c_i are scale-independent.
- The following expansion will also take into account finite-volume corrections:

$$M_{N} = c_{0} + c_{2}m_{\pi}^{2} + \chi_{N}m_{\pi}^{3} + c_{4}m_{\pi}^{4} + \left(-\frac{3}{4\pi\Delta}\chi_{\Delta} + \chi_{t}'\right)m_{\pi}^{4}\log\frac{m_{\pi}}{\mu} + \mathcal{O}(m_{\pi}^{5}).$$

• Recall:

$$\Sigma_{N} = rac{\chi_{N}}{2\pi^{2}} \int \mathrm{d}^{3}k rac{k^{2}u^{2}(k;\Lambda)}{\omega^{2}(k)}.$$

- All forms of $u(k; \Lambda)$ are equivalent within the PCR.
- Consider the family of smooth *n*-tuple dipole attenuators:

$$u_n(k;\Lambda) = \left(1 + \frac{k^{2n}}{\Lambda^{2n}}\right)^{-2}.$$

• The dipole corresponds to n = 1. We shall also consider the cases n = 2, 3, the double- and triple-dipole forms, respectively.

• Recall:

$$\Sigma_{N} = \frac{\chi_{N}}{2\pi^{2}} \int d^{3}k \frac{k^{2}u^{2}(k;\Lambda)}{\omega^{2}(k)}.$$

- All forms of $u(k; \Lambda)$ are equivalent within the PCR.
- Consider the family of smooth *n*-tuple dipole attenuators:

$$u_n(k;\Lambda) = \left(1 + \frac{k^{2n}}{\Lambda^{2n}}\right)^{-2}.$$

• The dipole corresponds to n = 1. We shall also consider the cases n = 2, 3, the double- and triple-dipole forms, respectively.

• Recall:

$$\Sigma_{N} = \frac{\chi_{N}}{2\pi^{2}} \int d^{3}k \frac{k^{2}u^{2}(k;\Lambda)}{\omega^{2}(k)}.$$

- All forms of $u(k; \Lambda)$ are equivalent within the PCR.
- Consider the family of smooth n-tuple dipole attenuators:

$$u_n(k;\Lambda) = \left(1 + \frac{k^{2n}}{\Lambda^{2n}}\right)^{-2}.$$

• The dipole corresponds to n = 1. We shall also consider the cases n = 2, 3, the double- and triple-dipole forms, respectively.

• Recall:

$$\Sigma_{N} = \frac{\chi_{N}}{2\pi^{2}} \int \mathrm{d}^{3}k \frac{k^{2}u^{2}(k;\Lambda)}{\omega^{2}(k)}.$$

- All forms of $u(k; \Lambda)$ are equivalent within the PCR.
- Consider the family of smooth n-tuple dipole attenuators:

$$u_n(k;\Lambda) = \left(1 + \frac{k^{2n}}{\Lambda^{2n}}\right)^{-2}.$$

• The dipole corresponds to n = 1. We shall also consider the cases n = 2, 3, the double- and triple-dipole forms, respectively.

• Recall:

$$\Sigma_{N} = \frac{\chi_{N}}{2\pi^{2}} \int \mathrm{d}^{3}k \frac{k^{2}u^{2}(k;\Lambda)}{\omega^{2}(k)}.$$

- All forms of $u(k; \Lambda)$ are equivalent within the PCR.
- Consider the family of smooth n-tuple dipole attenuators:

$$u_n(k;\Lambda) = \left(1+\frac{k^{2n}}{\Lambda^{2n}}\right)^{-2}.$$

• The dipole corresponds to n = 1. We shall also consider the cases n = 2, 3, the double- and triple-dipole forms, respectively.

• Here are the three dipole-like forms at $\Lambda = 1.0$ GeV:

Lattice QCD Simulation Results

- In investigating the nucleon mass, we use lattice QCD results from:
 - PACS-CS (2009), arXiv:0807.1661v1: non-perturbatively O(a)-improved Wilson quarks, L = 2.9 fm.
 - JLQCD (2008), arXiv:0806.4744v3: $N_f = 2$ overlap fermions at L = 1.9 fm.
 - CP-PACS (2002), arXiv:hep-lat/0105015v1: mean field improved clover quark action at $L = 2.2 \rightarrow 2.8$ fm.

Intrinsic Scale Model: Pseudodata Analysis

Trial Extrapolations

- $\bullet\,$ Consider an extrapolation of results from PACS-CS, using a dipole regulator with $\Lambda_{\rm dip}=1.0$ GeV.
- (PACS-CS: non-perturbatively O(a)-improved Wilson quarks, L = 2.9 fm).

Trial Extrapolations

- $\bullet\,$ Consider an extrapolation of results from CP-PACS, using a dipole regulator with $\Lambda_{\rm dip}=1.0$ GeV.
- (CP-PACS: mean field improved clover quark action at $L = 2.2 \rightarrow 2.8$ fm).

Trial Extrapolations

 $\bullet\,$ What happens to the extrapolation as $\Lambda_{\rm dip}$ is changed?

- Different choices of regulator give different results! But is there an optimal choice?
- If we want to stay close to the PCR, how many data points should we use? Does it matter?
- Let's do a test: generate some ideal 'pseudodata' (infinite volume), at Λ^{created} = 1.0 GeV.
- As we increase the fit window, ie. increase the maximum m_{π}^2 , does the scale-dependence of the result change?

- Different choices of regulator give different results! But is there an optimal choice?
- If we want to stay close to the PCR, how many data points should we use? Does it matter?
- Let's do a test: generate some ideal 'pseudodata' (infinite volume), at Λ^{created} = 1.0 GeV.
- As we increase the fit window, ie. increase the maximum m_{π}^2 , does the scale-dependence of the result change?

- Different choices of regulator give different results! But is there an optimal choice?
- If we want to stay close to the PCR, how many data points should we use? Does it matter?
- Let's do a test: generate some ideal 'pseudodata' (infinite volume), at Λ^{created} = 1.0 GeV.
- As we increase the fit window, ie. increase the maximum m_{π}^2 , does the scale-dependence of the result change?

- Different choices of regulator give different results! But is there an optimal choice?
- If we want to stay close to the PCR, how many data points should we use? Does it matter?
- Let's do a test: generate some ideal 'pseudodata' (infinite volume), at Λ^{created} = 1.0 GeV.
- As we increase the fit window, ie. increase the maximum m_{π}^2 , does the scale-dependence of the result change?
• Assume there is an 'intrinsic scale'.

- Create some ideal pseudodata using this scale.
- Develop a technique to recover the scale from the pseudodata.
- Later: apply to actual lattice results.

- Assume there is an 'intrinsic scale'.
- Create some ideal pseudodata using this scale.
- Develop a technique to recover the scale from the pseudodata.
- Later: apply to actual lattice results.

- Assume there is an 'intrinsic scale'.
- Create some ideal pseudodata using this scale.
- Develop a technique to recover the scale from the pseudodata.
- Later: apply to actual lattice results.

- Assume there is an 'intrinsic scale'.
- Create some ideal pseudodata using this scale.
- Develop a technique to recover the scale from the pseudodata.
- Later: apply to actual lattice results.

Pseudodata: Renormalization Flow

- Consider the best fit $c_0(\text{GeV})$ renormalization flow.
- Notice that the correct value of c_0 is recovered exactly when $\Lambda_{dip} = \Lambda_{dip}^{created}$.

Pseudodata: Renormalization Flow

- Consider the best fit c_0 (GeV) renormalization flow.
- Notice that the correct value of c_0 is recovered exactly when $\Lambda_{dip} = \Lambda_{dip}^{created}$.

Pseudodata: Renormalization Flow

- Consider the result for c_2 .
- Though it is tempting to read off the value of any c_i as Λ → ∞, it is wrong (unless constrained to the PCR).

Pseudodata: Renormalization Flow

- Consider the result for c_2 .
- Though it is tempting to read off the value of any c_i as $\Lambda \to \infty$, it is wrong (unless constrained to the PCR).

Pseudodata: Renormalization Flow

• This intersection point is not trivial. To demonstrate this, we can analyze the pseudodata using a triple-dipole.

Pseudodata: Renormalization Flow

• The intersection is no longer a clear point, but a cluster at $\Lambda_{\rm dip}\approx 0.5-0.6$ GeV. This is the preferred value of $\Lambda_{\rm trip}.$

Intrinsic Scale: Mass of the Nucleon

- In the pseudodata test example, the optimal cutoff (by construction) was recovered from the pseudodata themselves.
- But do actual lattice QCD simulation results have an intrinsic scale embedded in them?
- One might investigate this possibility by searching for an optimal regularization scale associated with lattice results that extend beyond the PCR.

- In the pseudodata test example, the optimal cutoff (by construction) was recovered from the pseudodata themselves.
- But do actual lattice QCD simulation results have an intrinsic scale embedded in them?
- One might investigate this possibility by searching for an optimal regularization scale associated with lattice results that extend beyond the PCR.

- In the pseudodata test example, the optimal cutoff (by construction) was recovered from the pseudodata themselves.
- But do actual lattice QCD simulation results have an intrinsic scale embedded in them?
- One might investigate this possibility by searching for an optimal regularization scale associated with lattice results that extend beyond the PCR.

• Let us repeat our analysis for real lattice QCD results (eg. JLQCD results: $N_f = 2$ overlap fermions at L = 1.9 fm):

• Consider the renormalization flow for best fit c_0 (GeV) using JLQCD results, working to chiral order $\mathcal{O}(m_\pi^3)$ and using a dipole regulator:

Chiral Effective Field Theory Beyond the Power-Counting Regime

 The intersection occurs at the same value of Λ for both c₀ and c₂. This is a highly significant result:

• To obtain a quantitative measure of the intrinsic scale, with an estimate of its systematic uncertainty, apply a χ^2_{dof} -style analysis...

Systematic Uncertainty

• Example plot: χ^2_{dof} obtained from c_0 using JLQCD results, working to chiral order $\mathcal{O}(m_{\pi}^3)$ and using a dipole regulator:

Chiral Effective Field Theory Beyond the Power-Counting Regime

Results

• The intrinsic scales $\Lambda^{\rm scale}$ (GeV) are tabulated for three different regulators and three different lattice result sets:

	regulator form		
optimal scale	dipole	double	triple
$\Lambda^{\rm scale}_{c_0, \rm JLQCD}$	$1.44\substack{+0.18\\-0.18}$	$1.08\substack{+0.11 \\ -0.11}$	$0.96\substack{+0.09\\-0.09}$
$\Lambda^{ m scale}_{c_2, m JLQCD}$	$1.40\substack{+0.02\\-0.03}$	$1.05\substack{+0.02 \\ -0.01}$	$0.94\substack{+0.01 \\ -0.02}$
$\Lambda^{\rm scale}_{c_0,{\rm PACS-CS}}$	$1.21\substack{+0.66\\-0.82}$	$0.93\substack{+0.41 \\ -0.58}$	$0.83\substack{+0.35 \\ -0.50}$
$\Lambda^{ m scale}_{c_2, m PACS-CS}$	$1.21\substack{+0.18 \\ -0.18}$	$0.93\substack{+0.11 \\ -0.12}$	$0.83\substack{+0.10 \\ -0.10}$
$\Lambda^{\rm scale}_{c_0,{\rm CP-PACS}}$	$1.20\substack{+0.10 \\ -0.10}$	$0.98\substack{+0.06\\-0.07}$	$0.88\substack{+0.06\\-0.06}$
$\Lambda^{ m scale}_{c_2, m CP-PACS}$	$1.19\substack{+0.02\\-0.01}$	$0.97\substack{+0.01 \\ -0.01}$	$0.87\substack{+0.01 \\ -0.01}$

- The renormalization curves for different m_{π}^2 fit windows intersect at a well-defined point.
- This is true for a variety of regulators.
- In each case, c_0 and c_2 agree on the intrinsic scale: Λ^{scale} .
- This indicates that lattice QCD results provide guidance in selecting an optimal scale for χ EFT beyond the PCR.

- The renormalization curves for different m_{π}^2 fit windows intersect at a well-defined point.
- This is true for a variety of regulators.
- In each case, c_0 and c_2 agree on the intrinsic scale: $\Lambda^{\rm scale}$
- This indicates that lattice QCD results provide guidance in selecting an optimal scale for χ EFT beyond the PCR.

- The renormalization curves for different m_{π}^2 fit windows intersect at a well-defined point.
- This is true for a variety of regulators.
- In each case, c_0 and c_2 agree on the intrinsic scale: Λ^{scale} .
- This indicates that lattice QCD results provide guidance in selecting an optimal scale for χ EFT beyond the PCR.

- The renormalization curves for different m_{π}^2 fit windows intersect at a well-defined point.
- This is true for a variety of regulators.
- In each case, c_0 and c_2 agree on the intrinsic scale: Λ^{scale} .
- This indicates that lattice QCD results provide guidance in selecting an optimal scale for χ EFT beyond the PCR.

Intrinsic Scale: Testing Robustness

Chiral Effective Field Theory Beyond the Power-Counting Regime

- Consider the quenched ρ meson.
- The Challenge: We want to predict the mass of the quenched ρ meson at physical pion mass ($m_{\pi, \text{phys}} = 140 \text{ MeV}$).
- We have quenched lattice QCD (QQCD) results from the Kentucky Group, but we are blinded to the lowest energy results.
- QQCD observables are an important testing ground, since there are no experimentally known values that can introduce a prejudice in the final result.

- Consider the quenched ρ meson.
- The Challenge: We want to predict the mass of the quenched ρ meson at physical pion mass ($m_{\pi,\text{phys}} = 140 \text{ MeV}$).
- We have quenched lattice QCD (QQCD) results from the Kentucky Group, but we are blinded to the lowest energy results.
- QQCD observables are an important testing ground, since there are no experimentally known values that can introduce a prejudice in the final result.

- Consider the quenched ρ meson.
- The Challenge: We want to predict the mass of the quenched ρ meson at physical pion mass ($m_{\pi, \text{phys}} = 140 \text{ MeV}$).
- We have quenched lattice QCD (QQCD) results from the Kentucky Group, but we are blinded to the lowest energy results.
- QQCD observables are an important testing ground, since there are no experimentally known values that can introduce a prejudice in the final result.

- Consider the quenched ρ meson.
- The Challenge: We want to predict the mass of the quenched ρ meson at physical pion mass ($m_{\pi, \text{phys}} = 140 \text{ MeV}$).
- We have quenched lattice QCD (QQCD) results from the Kentucky Group, but we are blinded to the lowest energy results.
- QQCD observables are an important testing ground, since there are no experimentally known values that can introduce a prejudice in the final result.

Quenched ρ Meson

QQCD Results from the Lattice

- The following results from Kentucky Group (L = 3.06 fm) are missing points close to the chiral limit.
- The available results lie in the range $380 < m_{\pi} < 1153$ MeV,
- The unavailable results lie in the range $200 < m_{\pi} < 380$ MeV.

Quenched ρ Meson

QQCD Results from the Lattice

- The following results from Kentucky Group (L = 3.06 fm) are missing points close to the chiral limit.
- The available results lie in the range $380 < m_{\pi} < 1153$ MeV,
- The unavailable results lie in the range $200 < m_{\pi} < 380$ MeV.

QQCD Results from the Lattice

- The following results from Kentucky Group (L = 3.06 fm) are missing points close to the chiral limit.
- The available results lie in the range $380 < m_\pi < 1153$ MeV,
- The unavailable results lie in the range $200 < m_{\pi} < 380$ MeV.

Chiral Extrapolation Formulae

- The quenched ρ meson mass expansion similarly contains a residual series and loop integrals.
- We will work to chiral order $\mathcal{O}(m_{\pi}^4)$.
- The renormalization of the low-energy constants takes place just as before. The fit parameters are a_0 , a_2 and a_4 .

Chiral Extrapolation Formulae

- The quenched ρ meson mass expansion similarly contains a residual series and loop integrals.
- We will work to chiral order $\mathcal{O}(m_{\pi}^4)$.
- The renormalization of the low-energy constants takes place just as before. The fit parameters are a_0 , a_2 and a_4 .

Chiral Extrapolation Formulae

- The quenched ρ meson mass expansion similarly contains a residual series and loop integrals.
- We will work to chiral order $\mathcal{O}(m_{\pi}^4)$.
- The renormalization of the low-energy constants takes place just as before. The fit parameters are a_0 , a_2 and a_4 .

Test for an Intrinsic Scale

• Consider the renormalization flow for c_0 using Kentucky Group results, working to chiral order $\mathcal{O}(m_{\pi}^4)$ and using a triple-dipole regulator:

Chiral Effective Field Theory Beyond the Power-Counting Regime

Test for an Intrinsic Scale

• The crossings are much harder to identify, so we will rely on our χ^2_{dof} method:

A
• Consider the result for c_2 using Kentucky Group results, working to chiral order $\mathcal{O}(m_{\pi}^4)$ and using a triple-dipole regulator:

• Consider the result for c_4 using Kentucky Group results, working to chiral order $\mathcal{O}(m_{\pi}^4)$ and using a triple-dipole regulator:

• The central, upper and lower regularization scales obtained from the χ^2_{dof} for the low-energy constants c_i :

• The average value for the optimal regularization scale is: $\Lambda^{\rm scale}=0.67^{+0.09}_{-0.08}$ GeV.

Completing 'The Challenge'

- $\Lambda^{\rm scale} = 0.67^{+0.09}_{-0.08}$ GeV.
- Inner error bar: systematic error from parameters.
- Outer error bar: systematic and statistical errors in quadrature.

Completing 'The Challenge'

- $\Lambda^{\rm scale} = 0.67^{+0.09}_{-0.08}$ GeV.
- Now, compare the low-energy lattice results (red):

Completing 'The Challenge'

- $\Lambda^{\rm scale} = 0.67^{+0.09}_{-0.08}$ GeV.
- Here, the error bars are correlated relative to the lightest data point in the original set, $m_{\pi}^2 = 0.143 \text{ GeV}^2$.

Including the Low-Energy Results

• By using the low-energy results within the PCR, scale-independence is recovered:

Including the Low-Energy Results

• By using the low-energy results within the PCR, scale-independence is recovered:

Including the Low-Energy Results

• By using the low-energy results within the PCR, scale-independence is recovered:

- Consider the renormalization of c_0 using the low-energy results.
- We can arbitrarily constrain the estimate of the systematic uncertainty from χ²_{dof} by including more lattice results:

• Left: χ^2_{dof} using 11 points,

Right: χ^2_{dof} using 17 points.

• How many data points should we include?

- Using a small number of results, extrapolation uncertainty is dominated by statistical error.
 - There are not enough results to constrain the fit parameters precisely.
- Using a large number of results, extrapolation uncertainty is dominated by systematic error.
 - There is greater scale-dependence using results that extend futher outside the PCR.
 - Extrapolation is, in general, more sensitive to changes in the parameters of the loop integrals.
- There should be an optimal value of $m_{\pi,\max}^2$, where the total uncertainty is minimized.

- How many data points should we include?
- Using a small number of results, extrapolation uncertainty is dominated by statistical error.
 - There are not enough results to constrain the fit parameters precisely.
- Using a large number of results, extrapolation uncertainty is dominated by systematic error.
 - There is greater scale-dependence using results that extend futher outside the PCR.
 - Extrapolation is, in general, more sensitive to changes in the parameters of the loop integrals.
- There should be an optimal value of $m_{\pi,\max}^2$, where the total uncertainty is minimized.

- How many data points should we include?
- Using a small number of results, extrapolation uncertainty is dominated by statistical error.
 - There are not enough results to constrain the fit parameters precisely.
- Using a large number of results, extrapolation uncertainty is dominated by systematic error.
 - There is greater scale-dependence using results that extend futher outside the PCR.
 - Extrapolation is, in general, more sensitive to changes in the parameters of the loop integrals.
- There should be an optimal value of $m_{\pi,\max}^2$, where the total uncertainty is minimized.

- How many data points should we include?
- Using a small number of results, extrapolation uncertainty is dominated by statistical error.
 - There are not enough results to constrain the fit parameters precisely.
- Using a large number of results, extrapolation uncertainty is dominated by systematic error.
 - There is greater scale-dependence using results that extend futher outside the PCR.
 - Extrapolation is, in general, more sensitive to changes in the parameters of the loop integrals.
- There should be an optimal value of $m_{\pi,\max}^2$, where the total uncertainty is minimized.

- How many data points should we include?
- Using a small number of results, extrapolation uncertainty is dominated by statistical error.
 - There are not enough results to constrain the fit parameters precisely.
- Using a large number of results, extrapolation uncertainty is dominated by systematic error.
 - There is greater scale-dependence using results that extend futher outside the PCR.
 - Extrapolation is, in general, more sensitive to changes in the parameters of the loop integrals.

• There should be an optimal value of $m_{\pi,\max}^2$, where the total uncertainty is minimized.

- How many data points should we include?
- Using a small number of results, extrapolation uncertainty is dominated by statistical error.
 - There are not enough results to constrain the fit parameters precisely.
- Using a large number of results, extrapolation uncertainty is dominated by systematic error.
 - There is greater scale-dependence using results that extend futher outside the PCR.
 - Extrapolation is, in general, more sensitive to changes in the parameters of the loop integrals.

There should be an optimal value of m²_{π,max}, where the total uncertainty is minimized.

- How many data points should we include?
- Using a small number of results, extrapolation uncertainty is dominated by statistical error.
 - There are not enough results to constrain the fit parameters precisely.
- Using a large number of results, extrapolation uncertainty is dominated by systematic error.
 - There is greater scale-dependence using results that extend futher outside the PCR.
 - Extrapolation is, in general, more sensitive to changes in the parameters of the loop integrals.
- There should be an optimal value of $m_{\pi,\max}^2$, where the total uncertainty is minimized.

• Consider the extrapolation of m_{ρ} to the physical point as $m_{\pi,\max}^2$ is increased:

• This indicates an optimal fit window: $\hat{m}_{\pi,\max}^2 = 0.20 \text{ GeV}^2$.

- A technique for isolating an optimal regulation scale has been tested in quenched QCD, where no experimental value of m_ρ exists to provide phenomenological bias.
- An optimal value of the maximum pion mass was also calculated. This method answers the question of how many data points we should include.
- The extrapolation correctly predicts the low-energy curvature that was observed when the low-energy lattice simulation results were revealed.
- The results clearly indicate a successful procedure for using lattice QCD results outside the PCR.

- A technique for isolating an optimal regulation scale has been tested in quenched QCD, where no experimental value of m_ρ exists to provide phenomenological bias.
- An optimal value of the maximum pion mass was also calculated. This method answers the question of how many data points we should include.
- The extrapolation correctly predicts the low-energy curvature that was observed when the low-energy lattice simulation results were revealed.
- The results clearly indicate a successful procedure for using lattice QCD results outside the PCR.

- A technique for isolating an optimal regulation scale has been tested in quenched QCD, where no experimental value of m_ρ exists to provide phenomenological bias.
- An optimal value of the maximum pion mass was also calculated. This method answers the question of how many data points we should include.
- The extrapolation correctly predicts the low-energy curvature that was observed when the low-energy lattice simulation results were revealed.
- The results clearly indicate a successful procedure for using lattice QCD results outside the PCR.

- A technique for isolating an optimal regulation scale has been tested in quenched QCD, where no experimental value of m_ρ exists to provide phenomenological bias.
- An optimal value of the maximum pion mass was also calculated. This method answers the question of how many data points we should include.
- The extrapolation correctly predicts the low-energy curvature that was observed when the low-energy lattice simulation results were revealed.
- The results clearly indicate a successful procedure for using lattice QCD results outside the PCR.

Intrinsic Scale: Magnetic Moment of the Nucleon

Chiral Effective Field Theory Beyond the Power-Counting Regime

- The analysis of the magnetic moment of the nucleon provides an excellent check for the identification of an intrinsic scale in the nucleon.
- Its chiral expansion similarly contains a residual series and loop integrals:

 $\mu_n = \{a_0 + a_2 m_{\pi}^2\} + \mathcal{T}_N^{\mu_n}(m_{\pi}^2; \Lambda) + \mathcal{T}_{\Delta}^{\mu_n}(m_{\pi}^2; \Lambda) + \mathcal{O}(m_{\pi}^4).$

• The leading-order non-analytic term is $\chi_N^{\mu_n} m_{\pi}$, and we work to chiral order $\mathcal{O}(m_{\pi}^2)$.

- The analysis of the magnetic moment of the nucleon provides an excellent check for the identification of an intrinsic scale in the nucleon.
- Its chiral expansion similarly contains a residual series and loop integrals:

 $\mu_n = \{a_0 + a_2 m_{\pi}^2\} + \mathcal{T}_N^{\mu_n}(m_{\pi}^2; \Lambda) + \mathcal{T}_{\Delta}^{\mu_n}(m_{\pi}^2; \Lambda) + \mathcal{O}(m_{\pi}^4).$

• The leading-order non-analytic term is $\chi_N^{\mu_n} m_{\pi}$, and we work to chiral order $\mathcal{O}(m_{\pi}^2)$.

- The analysis of the magnetic moment of the nucleon provides an excellent check for the identification of an intrinsic scale in the nucleon.
- Its chiral expansion similarly contains a residual series and loop integrals:

 $\mu_n = \{a_0 + a_2 m_{\pi}^2\} + \mathcal{T}_N^{\mu_n}(m_{\pi}^2; \Lambda) + \mathcal{T}_{\Delta}^{\mu_n}(m_{\pi}^2; \Lambda) + \mathcal{O}(m_{\pi}^4).$

• The leading-order non-analytic term is $\chi_N^{\mu_n} m_{\pi}$, and we work to chiral order $\mathcal{O}(m_{\pi}^2)$.

- The analysis of the magnetic moment of the nucleon provides an excellent check for the identification of an intrinsic scale in the nucleon.
- Its chiral expansion similarly contains a residual series and loop integrals:

 $\mu_n = \{a_0 + a_2 m_{\pi}^2\} + \mathcal{T}_N^{\mu_n}(m_{\pi}^2; \Lambda) + \mathcal{T}_{\Delta}^{\mu_n}(m_{\pi}^2; \Lambda) + \mathcal{O}(m_{\pi}^4).$

• The leading-order non-analytic term is $\chi_N^{\mu_n} m_{\pi}$, and we work to chiral order $\mathcal{O}(m_{\pi}^2)$.

• Consider the lattice QCD results for μ_n^{isov} from arXiv:1106.3580 [hep-lat] ($\mathcal{O}(a)$ -improved Wilson quarks, $L = 1.4 \rightarrow 3.0$ fm):

• The renormalization flow of c_0 is obtained using a dipole regulator:

• The χ^2_{dof} analysis using all available results shows a distinct optimal scale of $\Lambda^{\rm scale}_{\rm dip}=1.1$ GeV $(\pm\,0.2)$ GeV :

• This result is consistent with the value of $\Lambda_{\rm dip}^{\rm scale}$ obtained from the nucleon mass analysis.

Magnetic Moment: Extrapolations

• Extrapolations at finite or infinite volume, are now possible:

Magnetic Moment: Extrapolations

• The infinite-volume corrected data points (blue) are also shown:

• The infinite-volume extrapolation is within 2% of the experimentally derived value $\mu_n^{\text{isov}} = 4.6798 \,\mu_N$.

Intrinsic Scale: Electric Charge Radius of the Nucleon

Nucleon Electric Charge Radius

- The electric charge radius (slope of the electric form form factor at $Q^2 = 0$) of the isovector nucleon affords an opportunity to explore intrinsic scales, chiral extrapolations, and subtleties in finite-volume corrections.
- Its chiral expansion similarly contains a residual series and loop integrals:

 $\langle r^2 \rangle_E^{\text{isov}} = \{a_0 + a_2 m_\pi^2\} + \mathcal{T}_N^E(m_\pi^2; \Lambda) + \mathcal{T}_\Delta^E(m_\pi^2; \Lambda) + \mathcal{T}_{\text{tad}}^E(m_\pi^2; \Lambda) + \mathcal{O}(m_\pi^4).$

• The leading-order non-analytic term is $(\chi_N^E + \chi_t^E) \log \frac{m_\pi}{\mu}$ (where μ is a fixed mass scale), and we work to chiral order $\mathcal{O}(m_\pi^2)$.

Nucleon Electric Charge Radius

- The electric charge radius (slope of the electric form form factor at $Q^2 = 0$) of the isovector nucleon affords an opportunity to explore intrinsic scales, chiral extrapolations, and subtleties in finite-volume corrections.
- Its chiral expansion similarly contains a residual series and loop integrals:

$\langle r^2 \rangle_E^{\text{isov}} = \{a_0 + a_2 m_\pi^2\} + \mathcal{T}_N^E(m_\pi^2; \Lambda) + \mathcal{T}_\Delta^E(m_\pi^2; \Lambda) + \mathcal{T}_{\text{tad}}^E(m_\pi^2; \Lambda) + \mathcal{O}(m_\pi^4).$

• The leading-order non-analytic term is $(\chi_N^E + \chi_t^E) \log \frac{m_\pi}{\mu}$ (where μ is a fixed mass scale), and we work to chiral order $\mathcal{O}(m_\pi^2)$.

Nucleon Electric Charge Radius

- The electric charge radius (slope of the electric form form factor at $Q^2 = 0$) of the isovector nucleon affords an opportunity to explore intrinsic scales, chiral extrapolations, and subtleties in finite-volume corrections.
- Its chiral expansion similarly contains a residual series and loop integrals:

$$\langle r^2 \rangle_E^{\text{isov}} = \{a_0 + a_2 m_\pi^2\} + \mathcal{T}_N^E(m_\pi^2; \Lambda) + \mathcal{T}_\Delta^E(m_\pi^2; \Lambda) + \mathcal{T}_{\text{tad}}^E(m_\pi^2; \Lambda) + \mathcal{O}(m_\pi^4).$$

• The leading-order non-analytic term is $(\chi_N^E + \chi_t^E) \log \frac{m_\pi}{\mu}$ (where μ is a fixed mass scale), and we work to chiral order $\mathcal{O}(m_\pi^2)$.
Nucleon Electric Charge Radius

- The electric charge radius (slope of the electric form form factor at $Q^2 = 0$) of the isovector nucleon affords an opportunity to explore intrinsic scales, chiral extrapolations, and subtleties in finite-volume corrections.
- Its chiral expansion similarly contains a residual series and loop integrals:

$$\langle r^2 \rangle_E^{\text{isov}} = \{a_0 + a_2 m_\pi^2\} + \mathcal{T}_N^E(m_\pi^2; \Lambda) + \mathcal{T}_\Delta^E(m_\pi^2; \Lambda) + \mathcal{T}_{\text{tad}}^E(m_\pi^2; \Lambda) + \mathcal{O}(m_\pi^4).$$

• The leading-order non-analytic term is $(\chi_N^E + \chi_t^E) \log \frac{m_\pi}{\mu}$ (where μ is a fixed mass scale), and we work to chiral order $\mathcal{O}(m_\pi^2)$.

Nucleon Electric Charge Radius

• Consider the lattice QCD data for $\langle r^2 \rangle_E^{\text{isov}}$ from arXiv:1106.3580 [hep-lat] ($\mathcal{O}(a)$ -improved Wilson quarks, $L = 1.9 \rightarrow 3.3$ fm):

Chiral Effective Field Theory Beyond the Power-Counting Regime

Test for an Intrinsic Scale

• The renormalization flow of $c_0^{(\mu)}$ for $\langle r^2 \rangle_E^{\rm isov}$ is obtained using a dipole regulator:

Chiral Effective Field Theory Beyond the Power-Counting Regime

Test for an Intrinsic Scale

• The χ^2_{dof} analysis using all available data shows an optimal scale of $\Lambda^{\rm scale}_{\rm dip}=1.67~{\rm GeV}~(+0.66-0.33)~{\rm GeV}$:

 This result is consistent with the values of A^{scale}_{dip} obtained from the nucleon mass and magnetic moment analyses.

• Extrapolations at finite or infinite volume, are now possible:

• The infinite-volume corrected data points (blue) are also shown:

• The infinite-volume extrapolation is $\sim 0.5\%$ different from the CODATA value $\langle r^2 \rangle_E^{\rm isov} = 0.88 \text{ fm}^2$.

Chiral Effective Field Theory Beyond the Power-Counting Regime

• An estimate in the uncertainty in the extrapolation due to $\Lambda^{\rm scale}$ is marked at the physical point:

Chiral Effective Field Theory Beyond the Power-Counting Regime

• An estimate of the statistical uncertainty in the extrapolation is marked at the physical point:

Chiral Effective Field Theory Beyond the Power-Counting Regime

• The results for the intrinsic scales obtained from the nucleon mass, magnetic moment and electric charge radius are collated:

- We have been able to extrapolate current lattice QCD results to the physical point, using Chiral Effective Field Theory.
- We have discovered that Finite-Range Regularized Chiral Effective Field Theory is instrumental for the analysis of lattice results extending outside the chiral Power-Counting Regime.
- We have developed a robust procedure for quantifying the degree of scale-dependence, through the search for an optimal regularization scale.
- The agreement among optimal scales for the nucleon indicate the existence of an intrinsic scale, which characterizes the nucleon-pion interaction.

- We have been able to extrapolate current lattice QCD results to the physical point, using Chiral Effective Field Theory.
- We have discovered that Finite-Range Regularized Chiral Effective Field Theory is instrumental for the analysis of lattice results extending outside the chiral Power-Counting Regime.
- We have developed a robust procedure for quantifying the degree of scale-dependence, through the search for an optimal regularization scale.
- The agreement among optimal scales for the nucleon indicate the existence of an intrinsic scale, which characterizes the nucleon-pion interaction.

- We have been able to extrapolate current lattice QCD results to the physical point, using Chiral Effective Field Theory.
- We have discovered that Finite-Range Regularized Chiral Effective Field Theory is instrumental for the analysis of lattice results extending outside the chiral Power-Counting Regime.
- We have developed a robust procedure for quantifying the degree of scale-dependence, through the search for an optimal regularization scale.
- The agreement among optimal scales for the nucleon indicate the existence of an intrinsic scale, which characterizes the nucleon-pion interaction.

- We have been able to extrapolate current lattice QCD results to the physical point, using Chiral Effective Field Theory.
- We have discovered that Finite-Range Regularized Chiral Effective Field Theory is instrumental for the analysis of lattice results extending outside the chiral Power-Counting Regime.
- We have developed a robust procedure for quantifying the degree of scale-dependence, through the search for an optimal regularization scale.
- The agreement among optimal scales for the nucleon indicate the existence of an intrinsic scale, which characterizes the nucleon-pion interaction.

Acknowledgments

- Thank you to Derek Leinweber and Ross Young for supervision during my PhD.
- Thank you to James Zanotti, Nilmani Mathur, Keh-Fei Liu, Frank Lee and Jianbo Zhang for collaboration and support in this work.
- Thank you to Anthony Thomas, Rod Crewther and Daniel Phillips for insightful and informative discussions.

Thank You

Gary Larson (1995), The Far Side Gallery 2.

Chiral Effective Field Theory Beyond the Power-Counting Regime