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Overview

Aims

Chiral Perturbation Theory describes the low-energy region, but is
limited to use over a very small range of quark masses. How can we
overcome this?

Lattice Quantum Chromodynamics (QCD) is difficult to evaluate at
physical quark mass, large volumes and small lattice spacings. How
large is ‘large enough’ for a box size? We want to be able to
extrapolate current results to the physical point.

Using more of the available lattice results often entails
regularization scale-dependence in extrapolations. But the lattice
results themselves provide guidance on the choice of scale.

This will lead us to realizing the presence of an intrinsic energy
scale, embedded in lattice QCD results.
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Introduction

Why use χEFT?

Chiral Effective Field Theory (χEFT) complements lattice QCD.

It assists in understanding the consequences of dynamical chiral
symmetry breaking.

It provides a scheme-independent approach for investigating the
properties of hadrons.

In particular, it can be used in conjunction with lattice QCD results
to extrapolate:

to physical quark mass,

to infinite lattice volume and the continuum limit.

4 / 76
Chiral Effective Field Theory Beyond the Power-Counting Regime

N



Introduction

Why use χEFT?

Chiral Effective Field Theory (χEFT) complements lattice QCD.

It assists in understanding the consequences of dynamical chiral
symmetry breaking.

It provides a scheme-independent approach for investigating the
properties of hadrons.

In particular, it can be used in conjunction with lattice QCD results
to extrapolate:

to physical quark mass,

to infinite lattice volume and the continuum limit.

4 / 76
Chiral Effective Field Theory Beyond the Power-Counting Regime

N



Introduction

Why use χEFT?

Chiral Effective Field Theory (χEFT) complements lattice QCD.

It assists in understanding the consequences of dynamical chiral
symmetry breaking.

It provides a scheme-independent approach for investigating the
properties of hadrons.

In particular, it can be used in conjunction with lattice QCD results
to extrapolate:

to physical quark mass,

to infinite lattice volume and the continuum limit.

4 / 76
Chiral Effective Field Theory Beyond the Power-Counting Regime

N



Introduction

Why use χEFT?

Chiral Effective Field Theory (χEFT) complements lattice QCD.

It assists in understanding the consequences of dynamical chiral
symmetry breaking.

It provides a scheme-independent approach for investigating the
properties of hadrons.

In particular, it can be used in conjunction with lattice QCD results
to extrapolate:

to physical quark mass,

to infinite lattice volume and the continuum limit.

4 / 76
Chiral Effective Field Theory Beyond the Power-Counting Regime

N



Introduction

Why use χEFT?

Chiral Effective Field Theory (χEFT) complements lattice QCD.

It assists in understanding the consequences of dynamical chiral
symmetry breaking.

It provides a scheme-independent approach for investigating the
properties of hadrons.

In particular, it can be used in conjunction with lattice QCD results
to extrapolate:

to physical quark mass,

to infinite lattice volume and the continuum limit.

4 / 76
Chiral Effective Field Theory Beyond the Power-Counting Regime

N



Introduction

Why use χEFT?

Chiral Effective Field Theory (χEFT) complements lattice QCD.

It assists in understanding the consequences of dynamical chiral
symmetry breaking.

It provides a scheme-independent approach for investigating the
properties of hadrons.

In particular, it can be used in conjunction with lattice QCD results
to extrapolate:

to physical quark mass,

to infinite lattice volume and the continuum limit.

4 / 76
Chiral Effective Field Theory Beyond the Power-Counting Regime

N



Introduction

Why use χEFT?

Chiral Perturbation Theory (χPT) is a low-energy theory where
gluons and quarks can be replaced by effective degrees of freedom.

χPT provides a formal expansion in terms of low-energy quark
masses and momenta.

The expansion is convergent if the quark masses and momenta are
small enough so that higher-order terms are negligible. This is called
the Power-Counting Regime (PCR).

Within the PCR, χPT is renormalization scale-independent, and can
be used to connect lattice simulations to the real world.

Outside the PCR, χPT is, in general, scale-dependent, and care
must be taken.

Note: Here, we use ‘χPT’ to mean a massless renormalization
scheme is used, but ‘χEFT’ allows different kinds of scheme.
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Introduction

The PCR: Nucleon Mass

The PCR is small; lattice results often extend outside the PCR.

Example: The leading-order low-energy coefficients are held fixed
for different regularization scales:
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Chiral Effective Field Theory
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EFT for Nucleons

Chiral Effective Field Theory

For an effective field theory, one writes out a low-energy effective
Lagrangian.

The terms of the Lagrangian are ordered in powers of momenta and
mass.

For nucleons (fermions) written as an SU(2) doublet ψ = (p n)T,
the relevant Lagrangian at O(p4) takes the form:

L
(1)
πN + L

(2)
tad = ψ̄

(

/∂−
◦

MN +

◦

gA

2fπ
γµγ5~τ · ∂µ~π

)

ψ + c2Tr[M+]ψ̄ψ .

The circle ◦ denotes a “bare” quantity: it becomes renormalized by
chiral loops from the field theory. Let’s look at the nucleon mass
MN ...
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EFT for Nucleons

Chiral Effective Field Theory

Using the Gell-Mann−Oakes−Renner Relation, mq ∝ m2
π
, the

nucleon mass MN is renormalized by:

MN = {terms analytic in m2
π
}+ {chiral loop corrections}

= {a0 + a2m
2
π
+ a4m

4
π
+O(m6

π
)}+ {Σloops} .

The analytic coefficients ai of the ‘residual series’ will be determined
by fitting to lattice QCD results.

The chiral loops have known, scale-independent coefficients, but
given rise to non-analytic behaviour.
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EFT for Nucleons

Chiral Loops: Heavy Baryon Limit

= ΣN =
χN

2π2

∫

d
3k

k2u2(k ; Λ)

ω2(k)
(ω(k) =

√

k2 +m2
π
)

= Σ∆ =
χ∆

2π2

∫

d
3k

k2u2(k ; Λ)

ω(k)(∆ + ω(k))
(∆ = M∆ −MN)

= Σtad = m2
π

χ′

t

4π

∫

d
3k

2u2(k ; Λ)

ω(k)
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EFT for Nucleons

‘Taylor’ Expansion of Chiral Loops

= ΣN = bN0 + bN2 m
2
π
+ χNm

3
π
+ bN4 m

4
π
+O(m5

π
)

= Σ∆ = b∆0 + b∆2 m2
π
+ b∆4 m4

π
−

3

4π∆
χ∆m

4
π
log

mπ

µ
+O(m5

π
)

= Σtad = bt
′

2 m
2
π
+ bt

′

4 m
4
π
+ χ′

tm
4
π
log

mπ

µ
+O(m5

π
)

Note: each integral expansion has an analytic polynomial, involving
bi (Λ), and non-analytic terms.
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EFT for Nucleons

Renormalization

How does the renormalization take place?
Consider the 1−pion loop integral as a test example:

ΣN =
2χN

π

∫

∞

0
dk

k4

k2 +m2
π

=
2χN

π

∫

∞

0
dk

(k2 +m2
π
)(k2 −m2

π
) +m4

π

k2 +m2
π

=
2χN

π

(
∫

∞

0
dk k2 −m2

π

∫

∞

0
dk

)

+ χNm
3
π
.
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EFT for Nucleons

Renormalization

In a massless renormalization scheme, there is no explicit
momentum cutoff, so each of the ai coefficients undergoes an
infinite renormalization or none at all:

c0 = a0 +
2χN

π

∫

∞

0
dk k2 ,

c2 = a2 −
2χN

π

∫

∞

0
dk ,

c4 = a4 + 0 , etc.
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EFT for Nucleons

Renormalization

In Finite-Range Regularization (FRR), a finite momentum cutoff Λ
is introduced (via a regulator function), and the chiral expansion is
resummed.

For a sharp cutoff regulator:

ΣN(Λ) =
2χN

π

∫ Λ

0
dk

k4

k2 +m2
π

=
2χN

π

(

Λ3

3
− Λm2

π
+m3

π
arctan

[

Λ

mπ

])

=
2χN

π

Λ3

3
−

2χN

π
Λm2

π
+ χNm

3
π
−

2χN

π

1

Λ
m4

π
+ · · · .
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In Finite-Range Regularization (FRR), a finite momentum cutoff Λ
is introduced (via a regulator function), and the chiral expansion is
resummed.

For a sharp cutoff regulator:

ΣN(Λ) =
2χN

π

∫ Λ

0
dk

k4

k2 +m2
π

=
2χN

π
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3
− Λm2

π
+m3

π
arctan

[

Λ

mπ

])

=
2χN

π

Λ3

3
−

2χN

π
Λm2

π
+ χNm

3
π
−

2χN

π

1

Λ
m4

π
+ · · · .

14 / 76
Chiral Effective Field Theory Beyond the Power-Counting Regime

N



EFT for Nucleons

Renormalization

The massless renormalization scheme result is recovered as Λ → ∞.

c0 = a0 +
2χN

3
Λ3 ,

c2 = a2 −
2χN

π
Λ ,

c4 = a4 −
2χN

π

1

Λ
, etc.

The scale-dependence of the ai ’s exactly compensates the
scale-dependence of the bi ’s, so each ci is scale-independent, even
at finite Λ.
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EFT for Nucleons

Renormalization

The coefficients χN , χ∆ & χ′

t are known, scale-independent
parameters (related to gA, fπ, etc).

The coefficients bi (Λ) however, are scale-dependent, but they occur
at the relevant chiral orders to renormalize the residual series:

c0 = a0 + bN0 + b∆0 ,

c2 = a2 + bN2 + b∆2 + bt
′

2 ,

c4 = a4 + bN4 + b∆4 + bt
′

4 , etc.

These renormalized coefficients ci are scale-independent.

The following expansion will also take into account finite-volume
corrections:

MN = c0 + c2m
2
π
+ χNm

3
π
+ c4m

4
π

+

(

−
3

4π∆
χ∆ + χ′

t

)

m4
π
log

mπ

µ
+O(m5

π
) .

16 / 76
Chiral Effective Field Theory Beyond the Power-Counting Regime

N



EFT for Nucleons

Renormalization

The coefficients χN , χ∆ & χ′

t are known, scale-independent
parameters (related to gA, fπ, etc).

The coefficients bi (Λ) however, are scale-dependent, but they occur
at the relevant chiral orders to renormalize the residual series:

c0 = a0 + bN0 + b∆0 ,

c2 = a2 + bN2 + b∆2 + bt
′

2 ,

c4 = a4 + bN4 + b∆4 + bt
′

4 , etc.

These renormalized coefficients ci are scale-independent.

The following expansion will also take into account finite-volume
corrections:

MN = c0 + c2m
2
π
+ χNm

3
π
+ c4m

4
π

+

(

−
3

4π∆
χ∆ + χ′

t

)

m4
π
log

mπ

µ
+O(m5

π
) .

16 / 76
Chiral Effective Field Theory Beyond the Power-Counting Regime

N



EFT for Nucleons

Renormalization

The coefficients χN , χ∆ & χ′

t are known, scale-independent
parameters (related to gA, fπ, etc).

The coefficients bi (Λ) however, are scale-dependent, but they occur
at the relevant chiral orders to renormalize the residual series:

c0 = a0 + bN0 + b∆0 ,

c2 = a2 + bN2 + b∆2 + bt
′

2 ,

c4 = a4 + bN4 + b∆4 + bt
′

4 , etc.

These renormalized coefficients ci are scale-independent.

The following expansion will also take into account finite-volume
corrections:

MN = c0 + c2m
2
π
+ χNm

3
π
+ c4m

4
π

+

(

−
3

4π∆
χ∆ + χ′

t

)

m4
π
log

mπ

µ
+O(m5

π
) .

16 / 76
Chiral Effective Field Theory Beyond the Power-Counting Regime

N



EFT for Nucleons

Renormalization

The coefficients χN , χ∆ & χ′

t are known, scale-independent
parameters (related to gA, fπ, etc).

The coefficients bi (Λ) however, are scale-dependent, but they occur
at the relevant chiral orders to renormalize the residual series:

c0 = a0 + bN0 + b∆0 ,

c2 = a2 + bN2 + b∆2 + bt
′

2 ,

c4 = a4 + bN4 + b∆4 + bt
′

4 , etc.

These renormalized coefficients ci are scale-independent.

The following expansion will also take into account finite-volume
corrections:

MN = c0 + c2m
2
π
+ χNm

3
π
+ c4m

4
π

+

(

−
3

4π∆
χ∆ + χ′

t

)

m4
π
log

mπ

µ
+O(m5

π
) .

16 / 76
Chiral Effective Field Theory Beyond the Power-Counting Regime

N



EFT for Nucleons

Renormalization

The coefficients χN , χ∆ & χ′

t are known, scale-independent
parameters (related to gA, fπ, etc).

The coefficients bi (Λ) however, are scale-dependent, but they occur
at the relevant chiral orders to renormalize the residual series:

c0 = a0 + bN0 + b∆0 ,

c2 = a2 + bN2 + b∆2 + bt
′

2 ,

c4 = a4 + bN4 + b∆4 + bt
′

4 , etc.

These renormalized coefficients ci are scale-independent.

The following expansion will also take into account finite-volume
corrections:

MN = c0 + c2m
2
π
+ χNm

3
π
+ c4m

4
π

+

(

−
3

4π∆
χ∆ + χ′

t

)

m4
π
log

mπ

µ
+O(m5

π
) .

16 / 76
Chiral Effective Field Theory Beyond the Power-Counting Regime

N



EFT for Nucleons

Renormalization

The coefficients χN , χ∆ & χ′

t are known, scale-independent
parameters (related to gA, fπ, etc).

The coefficients bi (Λ) however, are scale-dependent, but they occur
at the relevant chiral orders to renormalize the residual series:

c0 = a0 + bN0 + b∆0 ,

c2 = a2 + bN2 + b∆2 + bt
′

2 ,

c4 = a4 + bN4 + b∆4 + bt
′

4 , etc.

These renormalized coefficients ci are scale-independent.

The following expansion will also take into account finite-volume
corrections:

MN = c0 + c2m
2
π
+ χNm

3
π
+ c4m

4
π

+

(

−
3

4π∆
χ∆ + χ′

t

)

m4
π
log

mπ

µ
+O(m5

π
) .

16 / 76
Chiral Effective Field Theory Beyond the Power-Counting Regime

N



EFT for Nucleons

Renormalization

The coefficients χN , χ∆ & χ′

t are known, scale-independent
parameters (related to gA, fπ, etc).

The coefficients bi (Λ) however, are scale-dependent, but they occur
at the relevant chiral orders to renormalize the residual series:

c0 = a0 + bN0 + b∆0 ,

c2 = a2 + bN2 + b∆2 + bt
′

2 ,

c4 = a4 + bN4 + b∆4 + bt
′

4 , etc.

These renormalized coefficients ci are scale-independent.

The following expansion will also take into account finite-volume
corrections:

MN = c0 + c2m
2
π
+ χNm

3
π
+ c4m

4
π

+

(

−
3

4π∆
χ∆ + χ′

t

)

m4
π
log

mπ

µ
+O(m5

π
) .

16 / 76
Chiral Effective Field Theory Beyond the Power-Counting Regime

N



EFT for Nucleons

Finite-Range Regulators

Recall:

ΣN =
χN

2π2

∫

d
3k

k2u2(k ; Λ)

ω2(k)
.

All forms of u(k ; Λ) are equivalent within the PCR.

Consider the family of smooth n−tuple dipole attenuators:

un(k ; Λ) =

(

1 +
k2n

Λ2n

)−2

.

The dipole corresponds to n = 1. We shall also consider the cases
n = 2, 3, the double- and triple-dipole forms, respectively.
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EFT for Nucleons

Finite-Range Regulators

Here are the three dipole-like forms at Λ = 1.0 GeV:
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EFT for Nucleons

Lattice QCD Simulation Results

In investigating the nucleon mass, we use lattice QCD results from:

PACS-CS (2009), arXiv:0807.1661v1: non-perturbatively
O(a)-improved Wilson quarks, L = 2.9 fm.

JLQCD (2008), arXiv:0806.4744v3: Nf = 2 overlap fermions at
L = 1.9 fm.

CP-PACS (2002), arXiv:hep-lat/0105015v1: mean field improved
clover quark action at L = 2.2 → 2.8 fm.

19 / 76
Chiral Effective Field Theory Beyond the Power-Counting Regime

N



Intrinsic Scale Model: Pseudodata

Analysis
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Pseudodata

Trial Extrapolations

Consider an extrapolation of results from PACS-CS, using a dipole
regulator with Λdip = 1.0 GeV.

(PACS-CS: non-perturbatively O(a)-improved Wilson quarks,
L = 2.9 fm).
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Pseudodata

Trial Extrapolations

Consider an extrapolation of results from CP-PACS, using a dipole
regulator with Λdip = 1.0 GeV.

(CP-PACS: mean field improved clover quark action at
L = 2.2 → 2.8 fm).
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Pseudodata

Trial Extrapolations

What happens to the extrapolation as Λdip is changed?

23 / 76
Chiral Effective Field Theory Beyond the Power-Counting Regime

N



Pseudodata

Pseudodata

Different choices of regulator give different results! But is there an
optimal choice?

If we want to stay close to the PCR, how many data points should
we use? Does it matter?

Let’s do a test: generate some ideal ‘pseudodata’
(infinite volume), at Λcreated = 1.0 GeV.

As we increase the fit window, ie. increase the maximum m2
π
, does

the scale-dependence of the result change?
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Pseudodata

Pseudodata: Procedure

Assume there is an ‘intrinsic scale’.

Create some ideal pseudodata using this scale.

Develop a technique to recover the scale from the pseudodata.

Later: apply to actual lattice results.

25 / 76
Chiral Effective Field Theory Beyond the Power-Counting Regime

N



Pseudodata

Pseudodata: Procedure

Assume there is an ‘intrinsic scale’.

Create some ideal pseudodata using this scale.

Develop a technique to recover the scale from the pseudodata.

Later: apply to actual lattice results.

25 / 76
Chiral Effective Field Theory Beyond the Power-Counting Regime

N



Pseudodata

Pseudodata: Procedure

Assume there is an ‘intrinsic scale’.

Create some ideal pseudodata using this scale.

Develop a technique to recover the scale from the pseudodata.

Later: apply to actual lattice results.

25 / 76
Chiral Effective Field Theory Beyond the Power-Counting Regime

N



Pseudodata

Pseudodata: Procedure

Assume there is an ‘intrinsic scale’.

Create some ideal pseudodata using this scale.

Develop a technique to recover the scale from the pseudodata.

Later: apply to actual lattice results.

25 / 76
Chiral Effective Field Theory Beyond the Power-Counting Regime

N



Pseudodata

Pseudodata: Renormalization Flow

Consider the best fit c0(GeV) renormalization flow.

Notice that the correct value of c0 is recovered exactly when
Λdip = Λcreated

dip .
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Pseudodata

Pseudodata: Renormalization Flow

Consider the result for c2.

Though it is tempting to read off the value of any ci as Λ → ∞, it
is wrong (unless constrained to the PCR).
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Pseudodata

Pseudodata: Renormalization Flow

This intersection point is not trivial. To demonstrate this, we can
analyze the pseudodata using a triple-dipole.
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Pseudodata

Pseudodata: Renormalization Flow

The intersection is no longer a clear point, but a cluster at
Λdip ≈ 0.5− 0.6 GeV. This is the preferred value of Λtrip.
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Intrinsic Scale: Mass of the Nucleon
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Intrinsic Scale

Evidence for an Intrinsic Scale

In the pseudodata test example, the optimal cutoff (by
construction) was recovered from the pseudodata themselves.

But do actual lattice QCD simulation results have an intrinsic scale
embedded in them?

One might investigate this possibility by searching for an optimal
regularization scale associated with lattice results that extend
beyond the PCR.
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Intrinsic Scale

Evidence for an Intrinsic Scale

Let us repeat our analysis for real lattice QCD results (eg. JLQCD
results: Nf = 2 overlap fermions at L = 1.9 fm):
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Intrinsic Scale

Evidence for an Intrinsic Scale

Consider the renormalization flow for best fit c0(GeV) using JLQCD
results, working to chiral order O(m3

π
) and using a dipole regulator:
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Intrinsic Scale

Evidence for an Intrinsic Scale

The intersection occurs at the same value of Λ for both c0 and c2.
This is a highly significant result:

To obtain a quantitative measure of the intrinsic scale, with an
estimate of its systematic uncertainty, apply a χ2

dof -style analysis...
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Intrinsic Scale

Systematic Uncertainty

Example plot: χ2
dof obtained from c0 using JLQCD results, working

to chiral order O(m3
π
) and using a dipole regulator:

χ2
dof =

1

n − 1

∑

i

[c(m2
π,max,i ; Λ)− c̄(Λ)]

2

[δc(m2
π,max,i ; Λ)]

2
.
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Intrinsic Scale

Results

The intrinsic scales Λscale (GeV) are tabulated for three different
regulators and three different lattice result sets:

regulator form

optimal scale dipole double triple

Λscale
c0,JLQCD 1.44+0.18

−0.18 1.08+0.11
−0.11 0.96+0.09

−0.09

Λscale
c2,JLQCD 1.40+0.02

−0.03 1.05+0.02
−0.01 0.94+0.01

−0.02

Λscale
c0,PACS−CS 1.21+0.66

−0.82 0.93+0.41
−0.58 0.83+0.35

−0.50

Λscale
c2,PACS−CS 1.21+0.18

−0.18 0.93+0.11
−0.12 0.83+0.10

−0.10

Λscale
c0,CP−PACS 1.20+0.10

−0.10 0.98+0.06
−0.07 0.88+0.06

−0.06

Λscale
c2,CP−PACS 1.19+0.02

−0.01 0.97+0.01
−0.01 0.87+0.01

−0.01
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Intrinsic Scale

Nucleon Mass Summary

The renormalization curves for different m2
π
fit windows intersect at

a well-defined point.

This is true for a variety of regulators.

In each case, c0 and c2 agree on the intrinsic scale: Λscale.

This indicates that lattice QCD results provide guidance in selecting
an optimal scale for χEFT beyond the PCR.
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Intrinsic Scale: Testing Robustness
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Quenched ρ Meson

Establishing a Robust Method: A Test

Consider the quenched ρ meson.

The Challenge: We want to predict the mass of the quenched ρ
meson at physical pion mass (mπ,phys = 140 MeV).

We have quenched lattice QCD (QQCD) results from the Kentucky
Group, but we are blinded to the lowest energy results.

QQCD observables are an important testing ground, since there are
no experimentally known values that can introduce a prejudice in
the final result.
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QQCD observables are an important testing ground, since there are
no experimentally known values that can introduce a prejudice in
the final result.
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Quenched ρ Meson

QQCD Results from the Lattice

The following results from Kentucky Group (L = 3.06 fm) are
missing points close to the chiral limit.

The available results lie in the range 380 < mπ < 1153 MeV,

The unavailable results lie in the range 200 < mπ < 380 MeV.
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Quenched ρ Meson

Chiral Extrapolation Formulae

The quenched ρ meson mass expansion similarly contains a residual
series and loop integrals.

We will work to chiral order O(m4
π
).

The renormalization of the low-energy constants takes place just as
before. The fit parameters are a0, a2 and a4.
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Quenched ρ Meson

Test for an Intrinsic Scale

Consider the renormalization flow for c0 using Kentucky Group
results, working to chiral order O(m4

π
) and using a triple-dipole

regulator:
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Quenched ρ Meson

Test for an Intrinsic Scale

The crossings are much harder to identify, so we will rely on our
χ2
dof method:
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Quenched ρ Meson

Test for an Intrinsic Scale

Consider the result for c2 using Kentucky Group results, working to
chiral order O(m4

π
) and using a triple-dipole regulator:
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Quenched ρ Meson

Test for an Intrinsic Scale

Consider the result for c4 using Kentucky Group results, working to
chiral order O(m4

π
) and using a triple-dipole regulator:
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Quenched ρ Meson

Test for an Intrinsic Scale

The central, upper and lower regularization scales obtained from the
χ2
dof for the low-energy constants ci :

The average value for the optimal regularization scale is:
Λscale = 0.67+0.09

−0.08 GeV.
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Quenched ρ Meson

Completing ‘The Challenge’

Λscale = 0.67+0.09
−0.08 GeV.

Inner error bar: systematic error from parameters.

Outer error bar: systematic and statistical errors in quadrature.
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Quenched ρ Meson

Completing ‘The Challenge’

Λscale = 0.67+0.09
−0.08 GeV.

Now, compare the low-energy lattice results (red):
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Quenched ρ Meson

Completing ‘The Challenge’

Λscale = 0.67+0.09
−0.08 GeV.

Here, the error bars are correlated relative to the lightest data point
in the original set, m2

π
= 0.143 GeV2.
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Quenched ρ Meson

Including the Low-Energy Results

By using the low-energy results within the PCR, scale-independence
is recovered:
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Quenched ρ Meson

Optimal Fit Window

Consider the renormalization of c0 using the low-energy results.

We can arbitrarily constrain the estimate of the systematic
uncertainty from χ2

dof by including more lattice results:

Left: χ2
dof using 11 points, Right: χ2

dof using 17 points.
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Quenched ρ Meson

Optimal Fit Window

How many data points should we include?

Using a small number of results, extrapolation uncertainty is
dominated by statistical error.

There are not enough results to constrain the fit parameters
precisely.

Using a large number of results, extrapolation uncertainty is
dominated by systematic error.

There is greater scale-dependence using results that extend futher
outside the PCR.
Extrapolation is, in general, more sensitive to changes in the
parameters of the loop integrals.

There should be an optimal value of m2
π,max, where the total

uncertainty is minimized.
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Quenched ρ Meson
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Quenched ρ Meson

Optimal Fit Window

Consider the extrapolation of mρ to the physical point as m2
π,max is

increased:

This indicates an optimal fit window: m̂2
π,max = 0.20 GeV2.
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Quenched ρ Meson

Quenched ρ Meson Mass Summary

A technique for isolating an optimal regulation scale has been tested
in quenched QCD, where no experimental value of mρ exists to
provide phenomenological bias.

An optimal value of the maximum pion mass was also calculated.
This method answers the question of how many data points we
should include.

The extrapolation correctly predicts the low-energy curvature that
was observed when the low-energy lattice simulation results were
revealed.

The results clearly indicate a successful procedure for using lattice
QCD results outside the PCR.
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Intrinsic Scale: Magnetic Moment of

the Nucleon
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Magnetic Moment

Nucleon Magnetic Moment

The analysis of the magnetic moment of the nucleon provides an
excellent check for the identification of an intrinsic scale in the
nucleon.

Its chiral expansion similarly contains a residual series and loop
integrals:

µn = {a0 + a2m
2
π
}+ T µn

N (m2
π
; Λ) + T µn

∆ (m2
π
; Λ) +O(m4

π
) .

The leading-order non-analytic term is χµn

N mπ, and we work to
chiral order O(m2

π
).
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Magnetic Moment

Nucleon Magnetic Moment

Consider the lattice QCD results for µisov
n from arXiv:1106.3580

[hep-lat] (O(a)-improved Wilson quarks, L = 1.4 → 3.0 fm):
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Magnetic Moment

Test for an Intrinsic Scale

The renormalization flow of c0 is obtained using a dipole regulator:
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Magnetic Moment

Test for an Intrinsic Scale

The χ2
dof analysis using all available results shows a distinct optimal

scale of Λscale
dip = 1.1 GeV (± 0.2) GeV :

This result is consistent with the value of Λscale
dip obtained from the

nucleon mass analysis.
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Magnetic Moment

Magnetic Moment: Extrapolations

Extrapolations at finite or infinite volume, are now possible:
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Magnetic Moment

Magnetic Moment: Extrapolations

The infinite-volume corrected data points (blue) are also shown:

The infinite-volume extrapolation is within 2% of the experimentally
derived value µisov

n = 4.6798µN .
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Intrinsic Scale: Electric Charge Radius

of the Nucleon

64 / 76
Chiral Effective Field Theory Beyond the Power-Counting Regime

N



Electric Charge Radius

Nucleon Electric Charge Radius

The electric charge radius (slope of the electric form form factor at
Q2 = 0) of the isovector nucleon affords an opportunity to explore
intrinsic scales, chiral extrapolations, and subtleties in finite-volume
corrections.

Its chiral expansion similarly contains a residual series and loop
integrals:

〈r2〉isovE = {a0+a2m
2
π
}+T E

N (m2
π
; Λ)+T E

∆ (m2
π
; Λ)+T E

tad(m
2
π
; Λ)+O(m4

π
) .

The leading-order non-analytic term is (χE
N + χE

t ) log
mπ

µ
(where µ is

a fixed mass scale), and we work to chiral order O(m2
π
).
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Electric Charge Radius

Nucleon Electric Charge Radius

Consider the lattice QCD data for 〈r2〉isovE from arXiv:1106.3580
[hep-lat] (O(a)-improved Wilson quarks, L = 1.9 → 3.3 fm):
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Electric Charge Radius

Test for an Intrinsic Scale

The renormalization flow of c
(µ)
0 for 〈r2〉isovE is obtained using a

dipole regulator:
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Electric Charge Radius

Test for an Intrinsic Scale

The χ2
dof analysis using all available data shows an optimal scale of

Λscale
dip = 1.67 GeV (+0.66− 0.33) GeV :

This result is consistent with the values of Λscale
dip obtained from the

nucleon mass and magnetic moment analyses.

68 / 76
Chiral Effective Field Theory Beyond the Power-Counting Regime

N



Electric Charge Radius

Electric Charge Radius: Extrapolations

Extrapolations at finite or infinite volume, are now possible:
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Electric Charge Radius

Electric Charge Radius: Extrapolations

The infinite-volume corrected data points (blue) are also shown:

The infinite-volume extrapolation is ∼ 0.5% different from the
CODATA value 〈r2〉isovE = 0.88 fm2.
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Electric Charge Radius

Electric Charge Radius: Extrapolations

An estimate in the uncertainty in the extrapolation due to Λscale is
marked at the physical point:
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Electric Charge Radius

Electric Charge Radius: Extrapolations

An estimate of the statistical uncertainty in the extrapolation is
marked at the physical point:
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Conclusion

Conclusion

The results for the intrinsic scales obtained from the nucleon mass,
magnetic moment and electric charge radius are collated:
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Conclusion

Conclusion

We have been able to extrapolate current lattice QCD results to the
physical point, using Chiral Effective Field Theory.

We have discovered that Finite-Range Regularized Chiral Effective
Field Theory is instrumental for the analysis of lattice results
extending outside the chiral Power-Counting Regime.

We have developed a robust procedure for quantifying the degree of
scale-dependence, through the search for an optimal regularization
scale.

The agreement among optimal scales for the nucleon indicate the
existence of an intrinsic scale, which characterizes the nucleon-pion
interaction.
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