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Aims

@ Lattice QCD can rarely be evaluated at physical quark
masses. We want to be able to extrapolate current results
to this physical point.
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Aims

@ Lattice QCD can rarely be evaluated at physical quark
masses. We want to be able to extrapolate current results
to this physical point.

@ Chiral Perturbation Theory gives insight into this low
energy region, but is limited to use over a very small range
of quark masses.
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Aims

@ Lattice QCD can rarely be evaluated at physical quark
masses. We want to be able to extrapolate current results
to this physical point.

@ Chiral Perturbation Theory gives insight into this low
energy region, but is limited to use over a very small range
of quark masses.

@ We will discover that using more of the available data
often entails model-dependence.
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Aims

@ Lattice QCD can rarely be evaluated at physical quark
masses. We want to be able to extrapolate current results
to this physical point.

@ Chiral Perturbation Theory gives insight into this low
energy region, but is limited to use over a very small range
of quark masses.

@ We will discover that using more of the available data

often entails model-dependence. But the extent of the
model-dependence can be quantified and thus removed.
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@ This will lead us to realizing the presence of an ‘intrinsic
energy scale’, embedded in such lattice QCD data.
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Why use YEFT?

o Chiral Effective Field Theory (YEFT) complements lattice
QCD.

@ It assists in understanding the consequences of dynamical
chiral symmetry breaking.
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Why use YEFT?

o Chiral Effective Field Theory (YEFT) complements lattice
QCD.

@ It assists in understanding the consequences of dynamical
chiral symmetry breaking.

@ |t provides a scheme-independent approach for
investigating the properties of hadrons.
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Why use YEFT?

o Chiral Effective Field Theory (YEFT) complements lattice
QCD.

@ It assists in understanding the consequences of dynamical
chiral symmetry breaking.

@ |t provides a scheme-independent approach for
investigating the properties of hadrons.

@ In particular, it can be used in conjunction with lattice
QCD data to extrapolate results:
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Why use YEFT?

o Chiral Effective Field Theory (YEFT) complements lattice
QCD.

@ It assists in understanding the consequences of dynamical
chiral symmetry breaking.

@ |t provides a scheme-independent approach for
investigating the properties of hadrons.

@ In particular, it can be used in conjunction with lattice
QCD data to extrapolate results:

@ to physical quark masses,
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Why use YEFT?

o Chiral Effective Field Theory (YEFT) complements lattice
QCD.

@ It assists in understanding the consequences of dynamical
chiral symmetry breaking.

@ |t provides a scheme-independent approach for
investigating the properties of hadrons.

@ In particular, it can be used in conjunction with lattice
QCD data to extrapolate results:

@ to physical quark masses,

@ to infinite lattice volume and continuum limit.
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Why use YEFT?

@ Chiral Perturbation Theory (\xPT) is a low energy theory
where gluons and quarks can be replaced by effective
degrees of freedom.
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Why use YEFT?

@ Chiral Perturbation Theory (\xPT) is a low energy theory
where gluons and quarks can be replaced by effective
degrees of freedom.

@ xPT provides a formal expansion in terms of low energy
momenta and quark masses.
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Why use YEFT?

@ Chiral Perturbation Theory (\xPT) is a low energy theory
where gluons and quarks can be replaced by effective
degrees of freedom.

@ xPT provides a formal expansion in terms of low energy
momenta and quark masses.

@ The expansion is convergent if the quark mass is small so
that higher order terms are negligible. This is called the
Power Counting Regime (PCR).



4
vmﬁ\’\&

Jonathan Hall
Supervisors:
Derek
Leinweber &
Ross Young

Overview
Introduction

EFT for
Nucleons

Pseudodata
Intrinsic Scale

Quenched p
Meson

Conclusion

Why use YEFT?

@ Chiral Perturbation Theory (\xPT) is a low energy theory
where gluons and quarks can be replaced by effective
degrees of freedom.

@ xPT provides a formal expansion in terms of low energy
momenta and quark masses.

@ The expansion is convergent if the quark mass is small so
that higher order terms are negligible. This is called the
Power Counting Regime (PCR).

@ Within the PCR, xPT is scheme-independent, and can be
used to connect lattice simulations to the real world.
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Why use YEFT?

@ The PCR is small (m, < 200 MeV); lattice results

~

invariably extend outside the PCR.

@ ...enter Effective Field Theory, which provides novel
methods for describing results beyond the PCR.
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Why use YEFT?

@ The PCR is small (m, < 200 MeV); lattice results
invariably extend outside the PCR.

@ ...enter Effective Field Theory, which provides novel
methods for describing results beyond the PCR.

@ EFT can be used to search for the possible presence of an
‘intrinsic energy scale’ embedded in lattice QCD results.
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Why use YEFT?

@ The PCR is small (m, < 200 MeV); lattice results
invariably extend outside the PCR.

@ ...enter Effective Field Theory, which provides novel
methods for describing results beyond the PCR.

@ EFT can be used to search for the possible presence of an

‘intrinsic energy scale’ embedded in lattice QCD results.

@ But first...
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Formal Background

@ For an effective field theory, one writes out a low energy
effective Lagrangian.

@ The terms of the Lagrangian are ordered in powers of
momenta and mass.
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Formal Background

@ For an effective field theory, one writes out a low energy
effective Lagrangian.

@ The terms of the Lagrangian are ordered in powers of
momenta and mass.

@ For nucleons (fermions) written as an SU(2) doublet
U = (p n)7T, the first order (lowest energy) Lagrangian
takes the form:
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Formal Background

@ For an effective field theory, one writes out a low energy
effective Lagrangian.

@ The terms of the Lagrangian are ordered in powers of
momenta and mass.

@ For nucleons (fermions) written as an SU(2) doublet
U = (p n)7T, the first order (lowest energy) Lagrangian
takes the form:

O

LY =9 (p- 11y —i-ﬁ”y y5 7 O | W,
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@ The circle o denotes a “bare” quantity: it gets
renormalized by chiral loops from the field theory. Let's
look at the nucleon mass My ...




MIC

Jonathan Hall
Supervisors:
Derek
Leinweber &
Ross Young

Overview
Introduction

EFT for
Nucleons

Pseudodata

Intrinsic Scale

Quenched p
Meson

Conclusion

Chiral Effective Field Theory

@ The nucleon mass My is renormalized by:
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Chiral Effective Field Theory

@ The nucleon mass My is renormalized by:

@ an analytic polynomial associated with the quark masses
Myg.
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Chiral Effective Field Theory

@ The nucleon mass My is renormalized by:

o

an analytic polynomial associated with the quark masses
my.
chiral loop integrals Yjoops -
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Chiral Effective Field Theory

@ The nucleon mass My is renormalized by:
@ an analytic polynomial associated with the quark masses
my.
o chiral loop integrals ¥i50ps -
@ The low energy expansion formula about the chiral limit
(small my) is expressed using the
Gell-Mann—Oakes—Renner Relation m, oc m2:
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Chiral Effective Field Theory

@ The nucleon mass My is renormalized by:

@ an analytic polynomial associated with the quark masses
Myg.
o chiral loop integrals ¥i50ps -

@ The low energy expansion formula about the chiral limit

My

(small my) is expressed using the
Gell-Mann—Oakes—Renner Relation m, o< m2

= {terms analytic inm2 } + {chiral loop corrections}
= {ao+ agm?2 + agms + O(mE)} + {Sioops} -
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Chiral Effective Field Theory

@ The nucleon mass My is renormalized by:
@ an analytic polynomial associated with the quark masses
my.
o chiral loop integrals ¥i50ps -
@ The low energy expansion formula about the chiral limit
(small my) is expressed using the
Gell-Mann—Oakes—Renner Relation m, oc m2:

My = {terms analytic inm2 } + {chiral loop corrections}

= {ap + aam? + agmi + O(mS)} 4+ {Zioops} -

@ The analytic terms will be collectively called the ‘residual
series’, and their coefficients a; will be determined by
fitting to lattice QCD data.
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Chiral Effective Field Theory

@ The nucleon mass My is renormalized by:
@ an analytic polynomial associated with the quark masses
my.
o chiral loop integrals ¥i50ps -
@ The low energy expansion formula about the chiral limit
(small my) is expressed using the
Gell-Mann—Oakes—Renner Relation m, oc m2:

My = {terms analytic inm2 } + {chiral loop corrections}
= {ao+ agm?2 + agms + O(mE)} + {Sioops} -

@ The analytic terms will be collectively called the ‘residual
series’, and their coefficients a; will be determined by
fitting to lattice QCD data.

@ The chiral loops have known, scheme-independent
coefficients, but given rise to non-analytic behaviour.
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Chiral Loops

@ The integral form of the chiral loops are obtained using
the Feynman Rules for xPT, and can then be solved.
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Chiral Loops

@ The integral form of the chiral loops are obtained using
the Feynman Rules for xPT, and can then be solved.

@ Each loop, when evaluated from its integral form,
produces a non-analytic term.

@ To finite chiral order (O(m2 logm,)), the leading order
chiral loops are:
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Chiral Loops

@ The integral form of the chiral loops are obtained using
the Feynman Rules for xPT, and can then be solved.

@ Each loop, when evaluated from its integral form,
produces a non-analytic term.

@ To finite chiral order (O(m2 logm,)), the leading order
chiral loops are:

o the 1—pion loop (X ~ m?),
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Chiral Loops

@ The integral form of the chiral loops are obtained using
the Feynman Rules for xPT, and can then be solved.

@ Each loop, when evaluated from its integral form,
produces a non-analytic term.

@ To finite chiral order (O(m2 logm,)), the leading order
chiral loops are:

o the 1—pion loop (X ~ m?),
o the pion loop decuplet transition (A ~ m} logm,),
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Chiral Loops

@ The integral form of the chiral loops are obtained using
the Feynman Rules for xPT, and can then be solved.

@ Each loop, when evaluated from its integral form,
produces a non-analytic term.

@ To finite chiral order (O(m2 logm,)), the leading order
chiral loops are:
o the 1—pion loop (X ~ m?),
o the pion loop decuplet transition (A ~ m} logm,),
o and the ‘tadpole’ loop (X¢aq ~ m* logm.,).
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Chiral Loops

@ The integral form of the chiral loops are obtained using
the Feynman Rules for xPT, and can then be solved.

@ Each loop, when evaluated from its integral form,
produces a non-analytic term.

@ To finite chiral order (O(m2 logm,)), the leading order
chiral loops are:
o the 1—pion loop (X ~ m?),
o the pion loop decuplet transition (A ~ m} logm,),
o and the ‘tadpole’ loop (X¢aq ~ m* logm.,).

@ In general, each loop integral also produces an analytic
polynomial in m?2 of its own.
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Chiral Loops

=Xy = b)) +bYmZ + xnmE + b)Y mE + O(m2)

3
:EA:bOA—i—bQAmfr—i—b ma +7AXAm

log =4+ O(m
W
— T+ 0(my)
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Chiral Loops

=Xy = b)) +bYmZ + xnmE + b)Y mE + O(m2)

3
= YA = b5 + bomE +bmd —i——XAm log = +0(m
i

A
n
N
[ \
N
+

= Yi0d = b2m —l—b4m + Xfmd‘ log . T4+ O(m?r)

@ Note: A is the mass splitting MaA — My, and p is the
mass scale associated with renormalization.
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Expansion Formulae

@ When the integrals are evaluated, the expansion becomes
an expansion in increasing powers of m, with
renormalized analytic and non-analytic terms occuring at
their respective orders:
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Renormalization Issues

@ The coefficients xn , xa & X} are known,

o
scheme-independent parameters (related to 94, fr, etc).
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Renormalization Issues

@ The coefficients xn , xa & X} are known,
o
scheme-independent parameters (related to 94, fr, etc).

@ The coefficients b; however, are scheme-dependent, but
they occur at the relevant chiral orders to renormalize the
residual series:
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Renormalization Issues

@ The coefficients xn , xa & X} are known,
o
scheme-independent parameters (related to 94, fr, etc).

@ The coefficients b; however, are scheme-dependent, but
they occur at the relevant chiral orders to renormalize the
residual series:

cp = a0—|—bév+boA,
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Renormalization Issues

@ The coefficients xn , xa & X} are known,
o
scheme-independent parameters (related to 94, fr, etc).

@ The coefficients b; however, are scheme-dependent, but
they occur at the relevant chiral orders to renormalize the
residual series:

co = ag-+ bév + bOA s
¢ = ag+0Y + 05+ b,
ci = ag+bY 405+, etc.

@ These renormalized coefficients ¢; are
scheme-independent, and of phenomenological interest.
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Renormalization Issues

@ The coefficients xn , xa & X} are known,
o
scheme-independent parameters (related to 94, fr, etc).

@ The coefficients b; however, are scheme-dependent, but
they occur at the relevant chiral orders to renormalize the
residual series:

co = ag-+ bév + bOA s
¢ = ag+0Y + 05+ b,
ci = ag+bY 405+, etc.

@ These renormalized coefficients ¢; are
scheme-independent, and of phenomenological interest.

@ ¢y is the nucleon mass in the chiral limit (m2 = 0), and ¢,
is related to the ‘sigma term’ o, of explicit chiral
symmetry breaking.
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Renormalization Issues

@ How does the renormalization take place?
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Renormalization Issues

@ How does the renormalization take place? Consider the
1—pion loop integral as a test example:

T
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Renormalization Issues

@ In a massless renormalization scheme, there is no explicit
momentum cutoff, so each of the a; coefficients undergoes
an infinite renormalization or none at all:
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Renormalization Issues

@ In Finite Range Regularization (FRR), a momentum cutoff
A is introduced (via a regulator function), and the chiral
expansion is resummed.

@ For a sharp cutoff regulator:

T
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Renormalization Issues

@ In Finite Range Regularization (FRR), a momentum cutoff
A is introduced (via a regulator function), and the chiral
expansion is resummed.

@ For a sharp cutoff regulator:

Yn(A)
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Renormalization Issues

@ The massless renormalization scheme result is recovered as
A — oo.
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Loop Integrals

@ We would like to define the loop integrals so that the
renormalization of ag and as happen automatically.
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Loop Integrals

@ We would like to define the loop integrals so that the
renormalization of ag and as happen automatically.

@ This simply means that, by convention, relevant by and by
terms will be subtracted from each integral.
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Loop Integrals

@ Taking the heavy-baryon limit and performing the kg
integration, the loop integrals take the following forms:
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Loop Integrals

@ Taking the heavy-baryon limit and performing the kg
integration, the loop integrals take the following forms:
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o (Xt [3, 207 (ki A) ay
oms | = [d°k — b5
2 <47r/ w(k) 2

com>G14q, pulling out ¢ as a factor.
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@ The pion energy is w(k) = \/k? + m2 and the FRR
regulator function is denoted by wu(k: A).
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Expansion Formulae

@ Note that the tadpole integral has a coefficient \} = oy,
which involves ¢, (obtained from the Lagrangian

Efgf’tad = o Tr (M, 0 0).

@ Thus the nucleon mass expansion formula can be
conveniently factorized:
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Expansion Formulae

]

]

My

Note that the tadpole integral has a coefficient \} = oy,
which involves ¢, (obtained from the Lagrangian

Efgf’tad = o Tr (M, 0 0).

Thus the nucleon mass expansion formula can be
conveniently factorized:

{ag + asm? + agmi + O(mE)} + {En + Za + Siaa}
= o+ com?(14 Giaq) + atmi + Sy +3a .
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Expansion Formulae

@ Note that the tadpole integral has a coefficient \} = oy,
which involves ¢, (obtained from the Lagrangian

5(2) tad = o Tr (M, 0 0).
@ Thus the nucleon mass expansion formula can be

conveniently factorized:

My = {(104—(12777 —|—(14m —I—O( )}‘F{ZN‘FEA—FEmd}
= o4 com2(1 4 G10q) + almi + Sy + XA

@ This formula can be used for extrapolations, with fit
coefficients ¢y, ¢o and afl\.
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Finite Volume Corrections

o Lattice QCD is done on a finite volume box.
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Finite Volume Corrections

o Lattice QCD is done on a finite volume box.

@ Our ideal infinite volume expansion formula should be
modified to include finite volume corrections.
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Finite Volume Corrections

o Lattice QCD is done on a finite volume box.

@ Our ideal infinite volume expansion formula should be
modified to include finite volume corrections.

@ Each integral can be converted into a discrete summation,
and then the difference is taken to achieve the correction:
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Finite Volume Corrections

o Lattice QCD is done on a finite volume box.

@ Our ideal infinite volume expansion formula should be
modified to include finite volume corrections.

@ Each integral can be converted into a discrete summation,
and then the difference is taken to achieve the correction:

FVC - om)?
T )
Y T o2l LLL, L, 2.

s

@ The tadpole finite volume corrections are subtle and will
not be dealt with in this talk.
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Finite Volume Corrections

@ The finite volume corrections are easily incorporated into
our expansion formula:

MY = co+ comi(l+ Gaa) + agmy

+ En+ )+ Ea+ ) +0omd).

@ We are almost ready to try an extrapolation from lattice
QCD data. But what form ought the regulator u(k:; A) to
take?
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Finite-Range Regulators

@ All forms of u(k; A) are equivalent within the PCR, as
long as they are normalized to 1, and are suppressed to 0
for large momenta k. Dimensional Regularization (DR)
corresponds to A — oo.
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Finite-Range Regulators

@ All forms of u(k; A) are equivalent within the PCR, as
long as they are normalized to 1, and are suppressed to 0
for large momenta k. Dimensional Regularization (DR)
corresponds to A — oo.

@ The step function 0(A — k) is acceptable, but is
unfavorable for use with the finite volume of the lattice.
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Finite-Range Regulators

@ All forms of u(k; A) are equivalent within the PCR, as
long as they are normalized to 1, and are suppressed to 0
for large momenta k. Dimensional Regularization (DR)
corresponds to A — oo.

@ The step function 0(A — k) is acceptable, but is
unfavorable for use with the finite volume of the lattice.

@ Consider the family of smooth n—tuple dipole attenuators:
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Finite-Range Regulators

@ All forms of u(k; A) are equivalent within the PCR, as
long as they are normalized to 1, and are suppressed to 0
for large momenta k. Dimensional Regularization (DR)
corresponds to A — oo.

@ The step function 0(A — k) is acceptable, but is
unfavorable for use with the finite volume of the lattice.

@ Consider the family of smooth n—tuple dipole attenuators:

]{211, -2
un(k; A) = (1 + AQ”) .

@ The dipole corresponds to n = 1. We shall also consider
the cases n = 2, 3, the double and triple dipole forms,
respectively.
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@ We shall analyze data using these three different regulators
to demonstrate the model-independence of this approach.




Finite-Range Regulators

@ Here are the three dipole-like forms plotted for A = 1.0

Jonathan Hall .
Supervisors: Gev
Derek
Leinweber &
Ross Young 1.0 T~ - T T T T T T T
N

09 \ 1

Overview 08 kL \\ dipole |
. >
Introduction 8 07 L \\ double dipole
EFT for : e .
Niehong 8 06 L \\ triple dipole
Pseudodata \
I 05 \ ]
Intrinsic Scale < \
Quenched p - 04 B \ 7]
—

Meson ) 0'3 | \ _
Conclusion ? \

0.2 .

\
0.1 F AN .
N
| | | | | 1| =4 —

0.0
00 02 0.4 06 08 10 12 14 16 18 20
k (GeV)




Jonathan Hall
Supervisors:
Derek
Leinweber &
Ross Young

Overview
Introduction

EFT for
Nucleons

Pseudodata

Intrinsic Scale

Quenched p
Meson

Conclusion

Trial Extrapolations

@ Consider the behaviour of M as a function of m?r
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Trial Extrapolations

@ Consider the behaviour
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@ Consider the behaviour of M as a function of m?r

Lol [ @ Here is an extrapolation of data from CP-PACS, using a
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@ There is nothing special about Ay, = 1.0 GeV.
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@ There is nothing special about Ay, = 1.0 GeV.

Jonathan Hall . R
Supervisors: @ What happens to the extrapolation as Ay, is changed?
Derek .
Leinweber & Consider the CP-PACS data:
Ross Young
1.30 ; T
Overview
| ) 125
ntroduction
EFT for 1.20
Nucleons
Pseudodata g 1.15
[
Intrinsic Scale g 1.10 +
Quenched p =
Meson g 1.05 original data
. ——-A = 0.5, inf.vol. dipole
Conclusion 1.00 —-— A = 0.8, infvol. dipole -
—— A = 1.0, inf.vol. dipole
----- A = 1.2, inf.vol. dipole
0.95 7 ----=- A = 2.0, inf.vol. dipole |
0.90 v | | | | |

0.00 0.05 0.10 0.15 020 0.25 0.30
m ? (GeV?)




sum%_
4
vmﬁ\’\&

Jonathan Hall
Supervisors:
Derek
Leinweber &
Ross Young

Overview
Introduction

EFT for
Nucleons

Pseudodata

Intrinsic Scale

Quenched p
Meson

Conclusion

Pseudodata

@ Different choices of regulator give different results! But is
there an optimal choice?



Jonathan Hall
Supervisors:
Derek
Leinweber &
Ross Young

Overview
Introduction

EFT for
Nucleons

Pseudodata

Intrinsic Scale

Quenched p
Meson

Conclusion

Pseudodata

@ Different choices of regulator give different results! But is
there an optimal choice?

@ Also, if we want to stay close to the PCR, how many data
points should we use?
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@ Different choices of regulator give different results! But is
there an optimal choice?

@ Also, if we want to stay close to the PCR, how many data
points should we use? Does it matter?

@ Let's do a test: Using the extrapolation formula for My,
generate some ideal ‘pseudodata’.
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@ Different choices of regulator give different results! But is
there an optimal choice?

@ Also, if we want to stay close to the PCR, how many data
points should we use? Does it matter?

@ Let's do a test: Using the extrapolation formula for My,
generate some ideal ‘pseudodata’.

@ Generate one set of 100 closely spaced, low energy
pseudodata points entirely within the PCR, created at
A = 1.0 GeV.

“*dip
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Pseudodata

@ Different choices of regulator give different results! But is
there an optimal choice?

@ Also, if we want to stay close to the PCR, how many data
points should we use? Does it matter?

@ Let's do a test: Using the extrapolation formula for My,
generate some ideal ‘pseudodata’.

@ Generate one set of 100 closely spaced, low energy
pseudodata points entirely within the PCR, created at
A = 1.0 GeV.

“*dip

@ Generate two more sets, at different upper values mfr_ymax,
thus progressing outside the PCR.
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Pseudodata

@ Different choices of regulator give different results! But is
there an optimal choice?

@ Also, if we want to stay close to the PCR, how many data
points should we use? Does it matter?

@ Let's do a test: Using the extrapolation formula for My,
generate some ideal ‘pseudodata’.

@ Generate one set of 100 closely spaced, low energy
pseudodata points entirely within the PCR, created at
A = 1.0 GeV.

“*dip
@ Generate two more sets, at different upper values mfr_ymax,
thus progressing outside the PCR.

o Choose infinite volume, thus avoiding any finite volume
subtleties.
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Pseudodata - Renormalization Flow

@ We can use these pseudodata sets for our analysis of
regulator dependence.
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@ We can use these pseudodata sets for our analysis of
regulator dependence.

@ The regulator dependence is characterized by the
behaviour of the renormalized constants ¢; with respect to
Adip-
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@ We can use these pseudodata sets for our analysis of
regulator dependence.

@ The regulator dependence is characterized by the
behaviour of the renormalized constants ¢; with respect to
Adi])-

@ Let’s plot our fit coefficients ¢y and ¢5 over a range of
Aqip values, for each of the three data sets. We have
chosen mZ . = 0.04, 0.25, 0.5 GeV?2.
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@ Here is the result for ¢ .
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@ Here is the result for ¢ .
@ Notice that the correct value of ¢ is recovered exactly
=A
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@ Here is the result for ¢ .
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@ Here is the result for ¢ .
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@ This intersection point is not trivial. To demonstrate this,
we can analyze the pseudodata using a triple dipole.
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@ Here is the result for co:
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@ Here is the result for co:
@ This intersection is no longer a clear point, but a cluster at
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@ The regulator dependence increased as the pseudodata
extended outside the PCR.
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@ The regulator dependence increased as the pseudodata
extended outside the PCR.

@ We also see that FRR breaks down if A is too small.
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@ The regulator dependence increased as the pseudodata
extended outside the PCR.

@ We also see that FRR breaks down if A is too small.

@ This makes sense mathematically, as blA x A3~ and so
for i = 4,6, .. these higher order coefficients blow up for
small A.
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@ The regulator dependence increased as the pseudodata
extended outside the PCR.

@ We also see that FRR breaks down if A is too small.

@ This makes sense mathematically, as blA x A3~ and so
for i = 4,6, .. these higher order coefficients blow up for
small A.

@ This also makes sense physically, as any ultraviolet
regulator A must be large enough to allow inclusion of the
chiral physics being studied.
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@ The regulator dependence increased as the pseudodata
extended outside the PCR.

@ We also see that FRR breaks down if A is too small.

@ This makes sense mathematically, as blA x A3~ and so
for i = 4,6, .. these higher order coefficients blow up for
small A.

@ This also makes sense physically, as any ultraviolet
regulator A must be large enough to allow inclusion of the
chiral physics being studied. Otherwise we essentially
destroy the non-analytic behaviour by making the integrals
~ 0.
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@ The regulator dependence increased as the pseudodata
extended outside the PCR.

@ We also see that FRR breaks down if A is too small.

@ This makes sense mathematically, as blA x A3~ and so
for i = 4,6, .. these higher order coefficients blow up for
small A.

@ This also makes sense physically, as any ultraviolet
regulator A must be large enough to allow inclusion of the
chiral physics being studied. Otherwise we essentially
destroy the non-analytic behaviour by making the integrals
~ 0.

@ Thus there is a lowest suitable value A, below which
we cannot ensure consistent renormalization.
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@ In the pseudodata test example, the optimal cutoff (by
construction) was obtained from the pseudodata
themselves.

@ But do actual lattice QCD data have an intrinsic scale
embedded in them?
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Evidence for an Intrinsic Scale

@ In the pseudodata test example, the optimal cutoff (by
construction) was obtained from the pseudodata
themselves.

@ But do actual lattice QCD data have an intrinsic scale
embedded in them?

@ If so, it would indicate that the data contain information
regarding an optimal FRR regulator.
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Evidence for an Intrinsic Scale

@ Let us repeat our analysis of ¢y and ¢o for the JLQCD,
PACS-CS and CP-PACS data sets.
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@ Let us repeat our analysis of ¢y and ¢o for the JLQCD,
PACS-CS and CP-PACS data sets.

@ We will obtain each one using the lightest 4 data points,

and increase m%max by one data point at a time.

@ Each time we add a new data point, we increase the
distance the data set extends outside the PCR, thus
increasing the scheme-dependence.
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@ Let us repeat our analysis of ¢y and ¢o for the JLQCD,
PACS-CS and CP-PACS data sets.

@ We will obtain each one using the lightest 4 data points,

and increase m%max by one data point at a time.

@ Each time we add a new data point, we increase the
distance the data set extends outside the PCR, thus
increasing the scheme-dependence. This helps identify the
intrinsic scale.
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@ Here is the result for ¢o using PACS-CS data, working to
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Evidence for an Intrinsic Scale

@ Here is the result for ¢o using CP-PACS data, working to
chiral order O(m2) and using a double dipole regulator:
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Evidence for an Intrinsic Scale

@ There is a reasonably well-defined intersection point
indicating the intrinsic scale.
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Evidence for an Intrinsic Scale

@ There is a reasonably well-defined intersection point
indicating the intrinsic scale.

@ For each regulator, the intersection occurs at the same
value of A for both ¢y and ¢o. This is a highly significant
result.
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Evidence for an Intrinsic Scale

@ There is a reasonably well-defined intersection point
indicating the intrinsic scale.

@ For each regulator, the intersection occurs at the same
value of A for both ¢y and ¢o. This is a highly significant
result.

@ The value of the intrinsic scale differs between regulator
types.
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Evidence for an Intrinsic Scale

@ There is a reasonably well-defined intersection point
indicating the intrinsic scale.

@ For each regulator, the intersection occurs at the same
value of A for both ¢y and ¢o. This is a highly significant
result.

@ The value of the intrinsic scale differs between regulator
types. The regulators are different shapes and a different
cutoff is required to achieve a similar suppression of the
large loop momenta.



Jonathan Hall
Supervisors:
Derek
Leinweber &
Ross Young

Overview
Introduction

EFT for
Nucleons

Pseudodata

Intrinsic Scale

Quenched p
Meson

Conclusion

Evidence for an Intrinsic Scale

@ There is a reasonably well-defined intersection point
indicating the intrinsic scale.

@ For each regulator, the intersection occurs at the same
value of A for both ¢y and ¢o. This is a highly significant
result.

@ The value of the intrinsic scale differs between regulator
types. The regulators are different shapes and a different
cutoff is required to achieve a similar suppression of the
large loop momenta.

@ To obtain a systematic uncertainty in the intrinsic scale,
apply a kind of X?lof analysis...
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@ On each of these renormalization flow plots, different
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curves correspond to different values of mz ...
k)

@ To what extent do the curves match?

@ Construct X?lof' where dof equals the number of m
values:
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@ On each of these renormalization flow plots, different
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Statistical Uncertainty

@ On each of these renormalization flow plots, different

curves correspond to different values of m2 ..
k)

@ To what extent do the curves match?

o Construct x7,;, where dof equals the number of m2 ...

values:

2
Xdof

where ¢ (A)

S 1/ (e, (M)

@ We shall construct X?lof for ¢y and ¢, seperately, and plot
against A.
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Results
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. Al g 121 0.93 0.83
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Higher Chiral Order

@ We found strong scheme-dependence when working to
chiral order O(m2) outside the PCR.



Jonathan Hall
Supervisors:
Derek
Leinweber &
Ross Young

Overview
Introduction

EFT for
Nucleons

Pseudodata

Intrinsic Scale

Quenched p
Meson

Conclusion

Higher Chiral Order

@ We found strong scheme-dependence when working to
chiral order O(m2) outside the PCR.

@ What happens if we try the higher chiral order
O(m3 logm)?
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Higher Chiral Order

9 At higher chiral order, there are no clear intersection
points. We are unable to identify an intrinsic scale.
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Higher Chiral Order

9 At higher chiral order, there are no clear intersection
points. We are unable to identify an intrinsic scale.

@ This means that the scheme-dependence is weakened by
working to higher chiral order.
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Higher Chiral Order

9 At higher chiral order, there are no clear intersection
points. We are unable to identify an intrinsic scale.

@ This means that the scheme-dependence is weakened by
working to higher chiral order.

@ This systematic error in ¢y and cs is larger than their
statistical errors, thus indicating that the data is outside
the PCR.
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9 At higher chiral order, there are no clear intersection
points. We are unable to identify an intrinsic scale.

@ This means that the scheme-dependence is weakened by
working to higher chiral order.

@ This systematic error in ¢y and cs is larger than their
statistical errors, thus indicating that the data is outside

the PCR.

@ There are now at least two ways of assessing the
systematic uncertainty in A:
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Higher Chiral Order

9 At higher chiral order, there are no clear intersection
points. We are unable to identify an intrinsic scale.

@ This means that the scheme-dependence is weakened by
working to higher chiral order.

@ This systematic error in ¢y and cs is larger than their
statistical errors, thus indicating that the data is outside
the PCR.

@ There are now at least two ways of assessing the
systematic uncertainty in A:

o from the x7, analysis at O(m3),
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Higher Chiral Order

9 At higher chiral order, there are no clear intersection
points. We are unable to identify an intrinsic scale.

@ This means that the scheme-dependence is weakened by
working to higher chiral order.

@ This systematic error in ¢y and cs is larger than their
statistical errors, thus indicating that the data is outside
the PCR.

@ There are now at least two ways of assessing the
systematic uncertainty in A:

o from the x7, analysis at O(m3),

o from the systematic error over A from the plots at
O(m2 logma).
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Summary for the Nucleon

@ We are now able to extrapolate //y s and obtain ¢y and
co by using FRR xEFT and selecting the intrinsic scale.
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Summary for the Nucleon

@ We are now able to extrapolate //y s and obtain ¢y and
co by using FRR xEFT and selecting the intrinsic scale.

@ We are also able to provide a realistic systematic error in
the result.
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Summary for the Nucleon

@ We are now able to extrapolate //y s and obtain ¢y and
co by using FRR xEFT and selecting the intrinsic scale.

@ We are also able to provide a realistic systematic error in
the result.

@ Examples using the dipole regulator, with uncertainties
(stat)(sys- # of points)(sys- A):
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Summary for the Nucleon

@ We are now able to extrapolate //y s and obtain ¢y and
co by using FRR xEFT and selecting the intrinsic scale.

@ We are also able to provide a realistic systematic error in
the result.
@ Examples using the dipole regulator, with uncertainties
(stat)(sys- # of points)(sys- A):
o )ACS=CS —0.900(51)(15)(6) (GeV),
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Summary for the Nucleon

@ We are now able to extrapolate //y s and obtain ¢y and
co by using FRR xEFT and selecting the intrinsic scale.

@ We are also able to provide a realistic systematic error in
the result.

@ Examples using the dipole regulator, with uncertainties
(stat)(sys- # of points)(sys- A):
o )ACS=CS —0.900(51)(15)(6) (GeV),
o HACS=C8 —306(32)(15)(25) (GeV™1),



Summary for the Nucleon

Jonathan Hall

SR @ We are now able to extrapolate //y s and obtain ¢y and

IR co by using FRR xEFT and selecting the intrinsic scale.

Ross Young

@ We are also able to provide a realistic systematic error in

Overview the result.

Introduction

EFT for @ Examples using the dipole regulator, with uncertainties
Nucleons .

N (stat)(sys- # of points)(sys- A):

Intrinsic Scale o )ACS=CS —0.900(51)(15)(6) (GeV),

Quenched p o (,'5ACS?CS = 306(32)(15)(25) (GeVil),

Meson

o MFPACS=CS — (),967(45)(43)(3) (GeV).

Conclusion N,phys




Summary for the Nucleon

Jonathan Hall

SR @ We are now able to extrapolate //y s and obtain ¢y and

IR co by using FRR xEFT and selecting the intrinsic scale.

Ross Young

@ We are also able to provide a realistic systematic error in
Overview the result.

Introduction

EFT for @ Examples using the dipole regulator, with uncertainties
Nucleons .

N (stat)(sys- # of points)(sys- A):

Intrinsic Scale o )ACS=CS —0.900(51)(15)(6) (GeV),

Sluenched P o (,'5ACS?CS = 306(32)(15)(25) (GeVil),

Conclusion ° ]\[‘{)'Ap(l;?:cs - 0967(45)(43)(3) (GeV)

@ re: PACS-CS data uses non-perturbatively O(a)-improved
Wilson quark action at L = 2.9 fm.
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@ Consider the quenched p meson.
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'"The Challenge’

@ Consider the quenched p meson.

@ We want to predict the mass of the quenched p meson at
physical pion mass (1M phys = 140 MeV)
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'"The Challenge’

@ Consider the quenched p meson.
@ We want to predict the mass of the quenched p meson at
physical pion mass (1M phys = 140 MeV)

@ We have quenched lattice QCD (QQCD) results from the
Kentucky Group, but we are blinded to the lowest energy
data.
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'"The Challenge’

@ Consider the quenched p meson.

@ We want to predict the mass of the quenched p meson at
physical pion mass (1M phys = 140 MeV)

@ We have quenched lattice QCD (QQCD) results from the
Kentucky Group, but we are blinded to the lowest energy
data.

@ QQCD observables are an important testing ground, since
there are no experimentally known values that can
introduce a prejudice in the final result.
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@ The following data from Kentucky Group (L = 3.06 fm)
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Supervisors:
Derek
Leinweber &
Ross Young

Overview

Introduction 0.98

T T T T T
EFT for L oniosl ot
: ysical Poin
Nucleons 0.96 | / [ i

Pseudodata

Intrinsic Scale — 0.94 - } i
: |
Quenched p o B |
Meson = 0.92 {
a
Conclusion s 0.90 - |
0.88 |- x  original data |
0.86 . ! 1 1 !

0.00 005 0.10 0.
m?

5 020 025 030
(GeV?®)




QQCD Data from the Lattice
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QQCD Data from the Lattice

@ The following data from Kentucky Group (L = 3.06 fm)

Jonathan Hall are missing points close to the chiral limit (mq = 0).
upervisors:
Leimerek @ The available data lie in the range 380 < m, < 720 MeV,
Ross Youns @ The unavailable data lie in the range 200 < m, < 380
MeV.
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Chiral Extrapolation Formulae

@ The quenched p meson mass m, g has a similar chiral
expansion to the nucleon.
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Chiral Extrapolation Formulae

@ The quenched p meson mass m, g has a similar chiral
expansion to the nucleon.

@ The expansion similarly contains a residual series and loop
integrals.
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Chiral Extrapolation Formulae

@ The quenched p meson mass m, g has a similar chiral
expansion to the nucleon.

@ The expansion similarly contains a residual series and loop
integrals. We will work to chiral order O(m2).



Jonathan Hall
Supervisors:
Derek
Leinweber &
Ross Young

Overview
Introduction

EFT for
Nucleons

Pseudodata

Intrinsic Scale

Quenched p
Meson

Conclusion

Chiral Extrapolation Formulae

@ The quenched p meson mass m, g has a similar chiral
expansion to the nucleon.

@ The expansion similarly contains a residual series and loop
integrals. We will work to chiral order O(m2).

@ The renormalization of the low energy constants takes
place just as before. The fit parameters are ¢, ¢o and ¢y.
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Chiral Extrapolation Formulae

@ The quenched p meson mass m, g has a similar chiral
expansion to the nucleon.

@ The expansion similarly contains a residual series and loop
integrals. We will work to chiral order O(m2).

@ The renormalization of the low energy constants takes
place just as before. The fit parameters are ¢, ¢o and ¢y.

@ We can generate some pseudodata as before, and plot
some renormalization flow curves.
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B B Finite-Range Regulators
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B B Finite-Range Regulators

@ Now let's check to see if results are regulator independent.
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Finite-Range Regulators
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Finite-Range Regulators

@ c4 is also problematic.
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Finite-Range Regulators

Jonathan Hall
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Leimerek @ The dipole regulator renormalization procedure was

Ross Young unsuccessful.

@ There are scheme-dependent extra non-analytic terms in
the chiral expansion that have not been provided for in the
fit. Pulling out the explicit A-dependence:
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Test for an Intrinsic Scale

@ Choice: We could use an a3 and an a5 parameter to
contain the contribution from these terms, or:

@ Better: choose a regulator which eliminates these extra
terms to finite order.

@ The triple dipole regulator is sufficient to suppress the
m. " terms.

@ We shall use it exclusively from now on.
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Test for an Intrinsic Scale

@ Here is the result for ¢5 using Kentucky Group data,
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Test for an Intrinsic Scale

@ Here is the result for ¢, using Kentucky Group data,
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Test for an Intrinsic Scale

@ The crossings are much harder to identify, so we will rely
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Test for an Intrinsic Scale
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The Intrinsic Scale

@ By averaging the result for the central value, the upper

and the lower limits among ¢, c¢2, and ¢4, the optimal
regulator scale AZ;IE( for the quenched p meson mass can
be calculated for this data set.
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The Intrinsic Scale

@ By averaging the result for the central value, the upper

and the lower limits among ¢, c¢2, and ¢4, the optimal
regulator scale AZ;IE( for the quenched p meson mass can
be calculated for this data set.

@ Using the triple dipole regulator, A;;lg‘ = 0.64 GeV
(+0.08 — 0.07) GeV.
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Completing 'The Challenge’

@ The extrapolation of the quenched p meson mass can now
be completed.
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Completing 'The Challenge’

@ The extrapolation of the quenched p meson mass can now
be completed.

; ; ; scale
@ Treating the various coupling constants and AF1* as

independent, their errors can be added in quadrature.
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Completing 'The Challenge’

@ The extrapolation of the quenched p meson mass can now
be completed.

scale

@ Treating the various coupling constants and AF1* as

independent, their errors can be added in quadrature.

@ We shall plot an inner error bar corresponding to the
systematic error coming from the choice in parameters
only.
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@ Here is the result of the extrapolation, filling in for the

Lol [ missing Kentucky Group data points.
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Completing 'The Challenge’

@ Now, the lattice results are added to the plot:
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@ Here, the error bars are correlated relative to the lightest
Jonathan Hall data point in the original set, mfr = 0.143 GeV2.
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By B Completing 'The Challenge’

e

@ Here, the error bars are correlated relative to the lightest

Jonathan Hall data point in the original set, m2 = 0.143 GeV2.
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Conclusion

@ We have been able to extrapolate current lattice QCD
results to the physical point, using Chiral Effective Field
Theory.
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Conclusion

@ We have been able to extrapolate current lattice QCD
results to the physical point, using Chiral Effective Field
Theory.

@ We have discovered that Finite-Range Regularization is
instrumental for the analysis of data extending outside the
chiral Power Counting Regime.
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Conclusion

@ We have been able to extrapolate current lattice QCD
results to the physical point, using Chiral Effective Field
Theory.

@ We have discovered that Finite-Range Regularization is
instrumental for the analysis of data extending outside the
chiral Power Counting Regime.

@ We have developed a robust procedure for quantifying the
degree of scheme-dependence, through the search for an
intrinsic scale Ascale,



4
vmﬁ\’\&

Jonathan Hall
Supervisors:
Derek
Leinweber &
Ross Young

Overview
Introduction

EFT for
Nucleons

Pseudodata

Intrinsic Scale

Quenched p
Meson

Conclusion

Conclusion

@ We have been able to extrapolate current lattice QCD
results to the physical point, using Chiral Effective Field
Theory.

@ We have discovered that Finite-Range Regularization is
instrumental for the analysis of data extending outside the
chiral Power Counting Regime.

@ We have developed a robust procedure for quantifying the
degree of scheme-dependence, through the search for an
intrinsic scale Ascale,

@ In quenched QCD, we have shown that the extrapolation
scheme can make quantifiable predictions without
phenomenologically motivated assumptions.
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Future Directions

@ An alternative technique for propagation of uncertainty in
the scale-dependence would be to consider marginalization
of the scale.
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Future Directions

@ An alternative technique for propagation of uncertainty in
the scale-dependence would be to consider marginalization
of the scale.

@ The extrapolation scheme can be applied to other

observables such as magnetic moment and charge radii of
octet baryons, which have large chiral curvature.
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Future Directions

@ An alternative technique for propagation of uncertainty in
the scale-dependence would be to consider marginalization
of the scale.

@ The extrapolation scheme can be applied to other
observables such as magnetic moment and charge radii of
octet baryons, which have large chiral curvature.

@ Finite volume corrections are of particular interest when
considering such observables.
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Overview

@ The extrapolation scheme can be applied to other
— observables such as magnetic moment and charge radii of
Nucleons octet baryons, which have large chiral curvature.
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Introduction

@ Finite volume corrections are of particular interest when
considering such observables.
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@ The extrapolation scheme will also be useful for
calculating the Roper resonance, which is difficult to
evaluate in lattice QCD.

Conclusion
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