Resonator sensors

Simulating 'whispering gallery modes' in micro-resonators.

Dr Jonathan Hall, FRSA: http://drjonathanmmhallfrsa.wordpress.com

ARC Georgina Sweet Laureate group: T. Monro, S. Afshar, A. François, N. Riesen

Sensing with light

- Light can resonate inside microscopic devices: spheres, disks or shells.
- What for? Resonators act as detectors of nearby macro-molecules, such as viruses, bacteria or DNA.
- How? Resonators of a certain size (diam: 5-30 μ m) can support special resonant 'whispering gallery modes'.
 - ightarrow We can fabricate these resonators (e.g. polystyrene). Let's investigate the quality of a resonator.

Illustration of a resonator. Polystyrene microspheres have been shown to **lase**.

'Whispering gallery modes'

- Electromagnetic waves at the boundary of a sphere or disk can be reflected around the surface.
- These resonant 'bound'
 whispering gallery modes
 correspond to the number of
 surface nodes, and radial nodes.
 The are also narrow ('high Q')
 and trackable.
- At the material/medium interface, an 'evanescent field' extends outward, which is sensitive to the external environment.

Whispering galleries

Simulation methods

- To test the viability of a resonator cost-effectively, we have developed a simulation tool (based on 'FDTD').
- In FDTD, a volume is discretised into a 4-d lattice.
- Field equations are solved at each step in time, making transient or emergent optical effects accessible.

Collecting flux from a microsphere.

Simulation methods

- We choose the source type, wavelength, and resonator size, and measure the radiation through a flux area, A.
- The profile of the power spectrum tells us about the mode structure, calculated from

$$P(\lambda) = \int (\mathbf{E} \times \mathbf{H}^*) \cdot \hat{\mathbf{n}} \, dA.$$

 Spheres, shells and odd-shape configurations are permitted, including inhomogeneous materials.

Collecting flux from a microsphere.

Tools of the trade

- Pro: FDTD is easy to customise- straightforward to incorporate changes to geometry, source distribution, index, and material inhomogeneities.
- Pro: FDTD can compute arbitrary flux regions/collection times to simulate realistic coupling scenarios.
- Con: FDTD is computationally intensive, especially for fine-detail, as waves across the whole volume must be simulated uniformly.
- Pro: Systematic effects from discretisation can be quantified using complementary Analytic models, and thus incorporated into the uncertainty estimate.

Tools of the trade

Computing resources required for a three-dimensional FDTD simulation of a 6 μ m diameter sphere excited by a dipole source with a central wavelength of 0.6 μ m. The Tizard machine at eResearchSA is used in these simulations, which uses AMD 6238, 2.6 GHz CPUs.

$\Delta x(nm)$	$\Delta \lambda (nm)$	CPUs	RAM(GB)	VM(GB)	WT(hrs:mins)
33	0.62	24	28.45	34.82	15 : 08
30	0.62	24	36.73	43.00	26 : 12
29	0.62	24	41.44	47.75	27 : 19
27	0.62	24	46.57	52.77	30:09
26	0.62	24	53.33	59.61	37 : 31
25	0.62	24	59.31	65.62	43:12
22	0.31	32	100.19	108.02	90 : 37

Tools of the trade

- FDTD is good for 'higher index-contrast' scenarios, where diameter ÷ wavelength is not too large.
- Analytic models (Mie Scattering/Shell-model) are good for 'lower index-contrast' scenarios, when diameter ÷ wavelength becomes large.

BUT:

 If we have high index-contrast, and a large diameter compared to wavelength, modes are so narrow and closely-spaced we can't track them!

Results

Radiation distribution

Radiation distribution

- We can also measure how the power is distributed, e.g. as seen by a fibre.
- More concentrated modes (smaller angular distribution) are less sensitive to changes in large collection apertures.

Power distribution for four different modes (wavelengths).

Radiation distribution

Fluorescent micro-shell simulation

Fluorescent micro-shell simulation

Plan for the future

- We are mapping out resonator configurations suitable for bio-sensing.
- Realistic structural imperfections are incorporated.
- What next:
 Optimal design solutions will be checked against a fabricated analogue of the resonator.
- Configurations that match viable design solutions will be sent for experiment.

Sensing technology of the future?