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Resonator sensors
Simulating ‘whispering gallery modes’ in micro-resonators.
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Sensing with light

o Light can resonate inside microscopic
devices: spheres, disks or shells.

o What for? Resonators act as detectors
of nearby macro-molecules, such as
viruses, bacteria or DNA.

o How? Resonators of a certain size (diam:
5-30 um) can support special resonant

‘whispering gallery modes'. Illustration of a resonator.
Polystyrene microspheres
— We can fabricate these resonators have been shown to lase.

(e.g. polystyrene). Let's investigate the
quality of a resonator.
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‘Whispering gallery modes’

o Electromagnetic waves at the
boundary of a sphere or disk can
be reflected around the surface.

o These resonant ‘bound’
whispering gallery modes
correspond to the number of
surface nodes, and radial nodes.
The are also narrow (‘high Q")
and trackable.

. . . Whispering galleries
o At the material/medium interface,

an ‘evanescent field' extends
outward, which is sensitive to the
external environment.
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Simulation methods

o To test the viability of a resonator
cost-effectively, we have developed

a simulation tool (based on
‘FDTD’).

o In FDTD, a volume is discretised
into a 4-d lattice.

o Field equations are solved at each
step in time, making transient or
emergent optical effects
accessible.

T
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Collecting flux from a microsphere.
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Simulation methods

o We choose the source type,
wavelength, and resonator size,
and measure the radiation
through a flux area, A.

o The profile of the power spectrum
tells us about the mode structure,
calculated from

P()) = /(E « H*) - dA.

o Spheres, shells and odd-shape
configurations are permitted,
including inhomogeneous
materials.
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6 microns

Collecting flux from a microsphere.
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Tools of the trade

o Pro: FDTD is easy to customise- straightforward to incorporate
changes to geometry, source distribution, index, and material
inhomogeneities.

o Pro: FDTD can compute arbitrary flux regions/collection times to
simulate realistic coupling scenarios.

o Con: FDTD is computationally intensive, especially for fine-detail,
as waves across the whole volume must be simulated uniformly.

o Pro: Systematic effects from discretisation can be quantified using
complementary Analytic models, and thus incorporated into the
uncertainty estimate.
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Tools of the trade

Computing resources required for a three-dimensional FDTD simulation of a
6 pm diameter sphere excited by a dipole source with a central wavelength of
0.6 um. The Tizard machine at eResearchSA is used in these simulations,
which uses AMD 6238, 2.6 GHz CPUs.

Ax(nm) AX(nm) CPUs RAM(GB) VM(GB) WT(hrs:mins)

33 0.62 24 28.45 34.82 15:08
30 0.62 24 36.73 43.00 26 : 12
29 0.62 24 41.44 47.75 27 : 19
27 0.62 24 46.57 52.77 30:09
26 0.62 24 53.33 59.61 37:31
25 0.62 24 59.31 65.62 43 : 12
22 0.31 32 100.19 108.02 90 : 37
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Tools of the trade

o FDTD is good for ‘higher index-contrast’ scenarios, where
diameter + wavelength is not too large.

o Analytic models (Mie Scattering/Shell-model) are good for ‘lower
index-contrast’ scenarios, when diameter = wavelength becomes
large.

BUT:
o If we have high index-contrast, and a large diameter compared to

wavelength, modes are so narrow and closely-spaced we can't track
them!
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Wavelength spectrum
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Wavelength spectrum
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Wavelength spectrum
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Wavelength spectrum
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Radiation distribution
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Radiation distribution

o We can also measure how
the power is distributed,
e.g. as seen by a fibre.

¥ [um]

o More concentrated modes
(smaller angular
distribution) are less
sensitive to changes in
large collection apertures.
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Power distribution for four different modes
(wavelengths).
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Radiation distribution
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Fluorescent micro-shell simulation
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1.08 --- D=10um, d=75nm, nC=1.45, src:75
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054 056 058 060 062 064 066
A [pm]




IONS-KOALA 2014, 23-28 November, Adelaide SA

Fluorescent micro-shell simulation
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Plan for the future

o We are mapping out resonator
configurations suitable for bio-sensing.

o Realistic structural imperfections are
incorporated.

o What next:
Optimal design solutions will be
checked against a fabricated analogue
of the resonator.

o Configurations that match viable Sensing technology of the future?
design solutions will be sent for
experiment.




